

Closest Point Turbulence for Liquid Surfaces Theodore Kim, Nils Thuerey, Jerry Tessendorf ACM Transactions on Graphics, 2013

100³ Houdini simulation

8x up-res, 100³ Houdini simulation

Outline

- Previous Works
- The Closest Point Method
- 3D iWave
- Additional Extensions
- Results

Outline

Previous Works

• The Closest Point Method

• 3D iWave

Additional Extensions

• Results

Smoke Up-Res

[Kim et al. 2008]

[Nielsen et al. 2009]

[Huang et al. 2011]

[Yuan et al. 2011]

Base simulation: 128×32×32

[Narain et al. 2008]

[Falcon 2010]

[Savelsberg and van de Water 2008]

PRL 100, 034501 (2008)

PHYSICAL REVIEW LETTERS

week ending 25 JANUARY 2008

Turbulence of a Free Surface

Ralph Savelsberg and Willem van de Water

Physics Department, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands (Received 9 August 2007; published 23 January 2008)

(Received 9 August 2007; published 23 January 2008)

Physics Department, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands

Surface waves travel much faster than the underlying water

Free Surface Turbulence

Kolmogorov spectrum: k^{-5/3}
Kolmogorov-Zakharov spectrum: k^{-11/4}
A.k.a. "wave" or "weak" turbulence
[Zakharov 1968]

Free Surface Turbulence

• The approach

- Low resolution simulation *initiates* waves
- Run a *wave simulation* on the liquid surface
- All purely Eulerian

Surface Simulation

[Angst et al. 2008]

	t=0.025	t=0.6	t=1.0	t=7.0
Implicit Euler				
Implicit Newmark				
Implicit Newmark				

Surface Simulation

[Bojsen-Hansen et al. 2012]

Surface Simulation

[Nielsen et al. 2012]

Outline

- Previous Works
- The Closest Point Method
- 3D iWave
- Additional Extensions
- Results

Closest Point Method

- A simple *embedding* method
 - [Ruuth and Merriman, 2008]
 - [Macdonald and Ruuth 2008]
 - [Macdonald and Ruuth 2009]
 - [Macdonald, Brandman and Ruuth 2011]

 $\frac{\partial^2 \phi}{\partial t^2} = c \nabla^2 \phi$

 $\frac{\partial^2 \phi}{\partial t^2} = c \nabla^2 \phi$

 ϕ

 ϕ

Outline

- Previous Works
- The Closest Point Method

• 3D iWave

• Additional Extensions

• Results

Closest Point Method

- Works well for $\nabla^2 d$
 - Laplacian: $abla^2 \phi$

iWave Equation

• [Tessendorf 2004]

$$\frac{\partial^2 \phi}{\partial t^2} = \sqrt{-\nabla^2} \phi$$

Superman Returns (2006)

Surf's Up (2007)

Happy Feet (2006)

#653354 : user:slo sc49.08:CmpMain.Main-0046 - 15:03 Oct 02

iWave Equation:

$$\frac{\partial^2 \phi}{\partial t^2} = \sqrt{-\nabla^2} \phi$$

Wave Equation:

$$\frac{\partial^2 \phi}{\partial t^2} = c \nabla^2 \phi$$

This is an Abel transform

Inverse Abel Transform

???

Inverse Abel Transform

 $\frac{1}{\pi}\int k^3 e^{-k^2}\operatorname{sinc}(kr)dk \qquad \int k^2 e^{-k^2} J_0(kr)dk$

Inverse Abel Transform

Inverse Abel Transform

Inverse Abel Transform

Inverse Abel Transform

Inverse Abel Transform

Finding

Any 2D operator can be applied to the Closest Point Method by taking its *inverse Abel transform*

Outline

- Previous Works
- The Closest Point Method
- 3D iWave
- Additional Extensions
- Results

Turbulence Seeding

Extension Field

Advection

Fig. 5: An overview of our narrow band advection. For clarity, we only show one side of the narrow band, and use linear interpolation stencils. The active cells for each step are highlighted, and the source cell with its velocity is shown in step 1. Note that both step 2 and 4 are adding cells to set A, which contains all cells that are initialized by extension in step 5. The cells from step 4 are needed to compute the backward advection in step 7.

backward advection in step 7.

are adding cells to set A, which contains all cells that are initialized by extension in step 5. The cells from step 4 are needed to compute the

Outline

- Previous Works
- The Closest Point Method
- 3D iWave
- Additional Extensions
- Results

100³ Houdini simulation, 00:12 per frame

 200^3 Houdini simulation, 03:44 per frame

4x up-res, 00:58 per frame

8x up-res, 05:29 per frame

Direct 200³ and 8x Up-Res split screen

	Houdini, Direct	Our Algorithm
1003	00:24	N/A
2003	03:44	00:12
400^{3}	38:00	00:58
8003	N/A	05:29
10003	N/A	11:12

12-core, 2.66 Ghz Intel Xeon

 $100^2 \ge 50$ simulation, 00:18 per frame

 100^3 simulation, 01:52 per frame

8x upres, 03:15 per frame

	Dam Break	Pouring
Original Simulation	00:18	01:52
2x Upres	00:06	00:07
4x Upres	00:21	00:34
8x Upres	02:48	03:15

12-core, 2.66 Ghz Intel Xeon

	Dam Break	Pouring
Original Simulation	00:18	01:52
2x Upres	00:06	00:07
4x Upres	00:21	00:34
8x Upres	02:48	03:15

12-core, 2.66 Ghz Intel Xeon

Conclusions

- Up-res liquids with a *surface simulation*
- The Closest Point Method (CPM) is simple, robust Eulerian method
- Adapt 2D stencils for CPM using the *inverse Abel transform*
- More details in paper
 - Turbulence seeding
 - Frozen core extension

Future Work

- Implicit CPM integrator?
- Up-res FLIP liquids?
- What other operators can we apply?

Acknowledgements

- NSERC Discovery, "Many-Core Physically Based Simulation"
- NSF CAREER, "Enabling Efficient Non-Linearities in Biomechanical Simulations"
- Side Effects Software, especially Jeff Lait

Thank You

Source: http://www.mat.ucsb.edu/~kim/CPT/source.html

8x up-res, classic wave equation

	Houdini, Direct	Our Algorithm
1003	00:24	N/A
2003	03:44	00:12
400 ³	38:00	00:58
8003	N/A	05:29
1000 ³	N/A	11:12

	Houdini, Direct	Our Algorithm
100 ³	00:24	N/A
200^{3}	03:44	00:12
400^{3}	38:00	00:58
8003	N/A	05:29
1000 ³	N/A	11:12

	Houdini, Direct	Our Algorithm
1003	00:24	N/A
200^{3}	03:44	00:12
400^{3}	38:00	00:58
8003	N/A	05:29
1000 ³	N/A	11:12

	Houdini, Direct	Our Algorithm
1003	00:24	N/A
200^{3}	03:44	00:12
400^{3}	38:00	00:58
8003	N/A	05:29
1000 ³	N/A	11:12

	Houdini, Direct	Our Algorithm
100 ³	00:24	N/A
200^{3}	03:44	00:12
400 ³	38:00	00:58
8003	N/A	05:29
1000 ³	N/A	11:12

	Dam Break	Pouring
Original Simulation	00:18	01:52
2x Upres	00:06	00:07
4x Upres	00:21	00:34
8x Upres	02:48	03:15

	Dam Break	Pouring
Original Simulation	00:18	01:52
2x Upres	00:06	00:07
4x Upres	00:21	00:34
8x Upres	02:48	03:15
Performance Per Frame

	Dam Break	Pouring
Original Simulation	00:18	01:52
2x Upres	00:06	00:07
4x Upres	00:21	00:34
8x Upres	02:48	03:15

[Nielsen and Bridson 2011]

2x up-res, 00:12 per frame

10x up-res, 11:12 per frame

Extension Field

Conventional Extension

Extension Field

Extend once

Extension Field

Frozen core extension