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Abstract

Simulating dynamic deformation has been an integral component of Pixar’s storytelling
since Boo’s shirt in Monsters, Inc. (2001). Recently, several key transformations have been
applied to Pixar’s core simulator Fizt that improve its speed, robustness, and generality.
Starting with Coco (2017), improved collision detection and response were incorporated
into the cloth solver, then with Cars 3 (2017) 3D solids were introduced, and in Onward
(2020) clothing is allowed to interact with a character’s body with two-way coupling.

The 3D solids are based on a fast, compact, and powerful new formulation that we have
published over the last few years at SIGGRAPH. Under this formulation, the construction
and eigendecomposition of the force gradient, long considered the most onerous part of
the implementation, becomes fast and simple. We provide a detailed, self-contained, and
unified treatment here that is not available in the technical papers. We also provide, for
the first time, open-source C++ implementations of many of the described algorithms.

This new formulation is only a starting point for creating a simulator that is up challenges
of a production environment. One challenge is performance: we discuss our current best
practices for accelerating system assembly and solver performance. Another challenge
that requires considerable attention is robust collision detection and response. Much has
been written about collision detection approaches such as proximity-queries, continuous
collisions and global intersection analysis. We discuss our strategies for using these
techniques, which provides us with valuable information that is needed to handle
challenging scenarios.
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1. Introduction

Chapter 1

Introduction

1.1 The Goals of This Course

Fizt1 has been the core simulator at Pixar ever sinceMonsters, Inc. in 2001. While many of
the basics of the battle-tested Baraff and Witkin (1998) model that it is based on have
remained the same over the years, a variety of key improvements and refinements have
also been introduced. Many of these improvements have been spread across technical
papers and talks presented the last two years at SIGGRAPH:

• Stable Neo-Hookean Flesh Simulation, Breannan Smith, Fernando de Goes, Theodore
Kim (Technical Paper presented at SIGGRAPH 2018)

• Better Collisions and Faster Cloth for Pixar’s Coco, David Eberle (Talk presented at
SIGGRAPH 2018)

• Clean Cloth Inputs: Removing Character Self-Intersections with Volume Simulation,
Audrey Wong, David Eberle, Theodore Kim (Talk presented at SIGGRAPH 2018)

• Robust Skin Simulation in Incredibles 2, Ryan Kautzman, Gordon Cameron, Theodore
Kim (Talk presented at SIGGRAPH 2018)

• Analytic Eigensystems for Isotropic Distortion Energies, Breannan Smith, Fernando de
Goes, Theodore Kim (Technical Paper presented at SIGGRAPH 2019)

• Anisotropic Elasticity for Inversion-Safety and Element Rehabilitation, Theodore Kim,
Fernando de Goes, Hayley Iben (Technical Paper presented at SIGGRAPH 2019)

Together, these improvements constitute the next major version of the simulator, which is
referred to internally as Fizt2. One of the goals of this course is to give a unified overview
of these developments in a way that no single paper or talk has been able to before.

1Pronounced “fizz” as in soda and “tea” as in Earl Grey, hot.
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1. Introduction

In addition to these, we have also include a new introduction to the fundamentals of
deformation mechanics (Chapter 2), based on a university course taught by one of the
authors over the last ten years. This treatment specifically focuses on introducing the
specific tensor-based formulation thatwasused to obtain the results in the aforementioned
technical papers. Matlab and C++ implementations of several subtle pieces of code have
been inlined as well, such as the ∂F

∂x matrix for tetrahedra (Fig. E.1) and shape derivative
matrices (Fig. D.3) for hexahedra.

1.2 NowWith Code!

In the spirit of the pbrt renderer of Pharr et al. (2016) we provide HOBAK 2, a prototype
C++ implementation of many of algorithms described in these notes. Just like pbrt is not
RenderMan, HOBAK is not Fizt. It was written entirely independently, and is intended to
serve as a research test bed, reference implementation, and pedagogical tool. Whenever
we have to choose between code clarity and run-time performance, we choose clarity.

HOBAK is not a production system. As such, it has very few dependencies, and should
build and run right off the bat. If you want to jump right into the C++, a starter guide is
in Appendix J
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2Hobak (호박) is Korean for pumpkin or squash. We will use it to squash things.
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Chapter 2

Deformation Fundamentals

2.1 Do I Need to Read This Chapter?
If you are brand-new to deformation simulation, or are coming back to it after some time
away, the answer is: yes.

There are several existing introductions to deformation geared towards computer
graphics, including the classic Witkin and Baraff (1997) as well as the more modern
Sifakis and Barbic (2012) or Bargteil and Shinar (2018). If you are a practitioner that is
already familiar with those materials, you can probably skip most of this chapter. The
one caveat is that many of the fast, compact structures we show later on will depend on
the notation for higher order tensors from Golub and Van Loan (2013). This does not
show up that often in computer graphics, so you may still want to read Chapter 3.

 

Figure 2.1.: The behavior of a hyperelastic bunny. Even when it is crushed by a 100
lb. weight, it recovers its original shape afterwards.
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2. Deformation Fundamentals

2.2 What Kind of Squashing Are We Talking About?
We will be looking at a specific form of solid deformation known as hyperelastic defor-
mation. Say we take a bunny and squash it with a 100 lb. weight (Fig.2.1). When we
remove the weight, it will sproing back to its exact original shape. This is the essence of
hyperelasticity: when all external forces are removed, a hyperelastic object returns to
its original shape. It does not matter if the bunny was stretched to a million times its
original length, or crushed down into a pancake. Once the forces are removed, it bounces
back to its original bunny shape.1

The original shape is thus considered quite special, as it is what the object “remembers”
and always “tries” to return to, and is assigned a special name: the rest shape. In fact,
when we squash a bunny with a 100 lb. weight, it is taking on the best possible or closest
possible shape to the rest shape that it can muster under the current conditions.

But what do we mean by best or closest? Best compared to what, or closest with respect to
what? This is really two questions.

1. How squashed am I? Alternately, how far am I from my original shape? Or: how
badly deformed am I compared to my original shape? Most concretely: can I
compute a quantitative deformation score that tells me exactly how stretched or
squashed I am, relative to my original shape?

2. Howmuch should I push back? Once I know how exactly how deformed I am, what
should I do with this knowledge? Is being really deformed considered extra-bad, so
I should push extra-hard to return to my original shape?

Let’s look at these questions in turn.
 

Figure 2.2.: On the left is the original, rest-shape triangle. On the right we (slightly)
deform the triangle by moving x1 downwards.

2.3 How Squashed Am I?
First, let’s look at an obviousway to measure deformation that will turn out to be wrong.
From there, we can think about what went wrong and come up with something better.

1Clearly, this does not always happen in reality. If you stretch a rubber bunny too much, the fibers
inside will slightly tear. When you let go, it will “remember” its rowdy treatment, and instead return to a
slightly-stretched-out-looking-bunny shape. This is called plastic deformation, and can be layered on top of
hyperelastic deformation, so we put it aside for the moment.
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2.3.1 Measuring The Wrong Way

Let’s look at a triangle (Fig. 2.2). We will denote its vertices in the rest shape using an
overbar as x̄0, x̄1, x̄2. After the triangle has been squashed away from it original shape,
we denote its deformed shape2 as x0, x1, x2. One obvious way to compute a score for how
deformed we are is then:

Ψwrong =

2∑
i=0

‖x̄i − xi‖2. (2.1)

Here, we use ‖ · ‖2 to denote the 2-norm. Don’t fret if you haven’t seen this notation
before; we have a description of it in Appendix C.1.1. It is a generalized shorthand for
denoting “distance”. We will also interchangeably refer to scoring functions as energy
functions. For our purposes, scoring and energy functions have the exact same meaning.

The scoring function Ψwrong, certainly looks reasonable. As you squash x1 downwards
more, or stretch it upwards more, the score (energy) definitely increases. We definitely
want the score function to equal zero when no deformation is occurring, and some
big number when lots of deformation is occurring. If that’s all that is required, Ψwrong
certainly seems to get the job done.

 

Figure 2.3.: We translate the original triangle (blue vertices) to the upper left (red vertices).
Does this triangle count as “deformed”?

Or does it? The problem is that a bunch of things that we would not intuitively consider
deformation also gets lumped in with the score. In Fig. 2.3, we have translated the triangle
a small distance to the upper right. If we use Ψwrong on this new triangle, then it will
show up as a non-zero score.

However, by any reasonable definition, this triangle is not deformed. Instead, it has
been moved, or translated. Fig. 2.4 shows another problem case. If we rotate the triangle,
then again, Ψwrong will return a non-zero score, mistakenly regarding this triangle as

2Other texts may use the terms material and world coordinates, so if you ever come across these, just
remember that rest = material and deformed = world.
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Figure 2.4.: We rotate the original triangle (blue vertices) clockwise (red vertices). Does
this triangle count as “deformed”?

“deformed”. However, by any reasonable definition, the triangle has been spun or rotated.
It has not been deformed.

What we want is a scoring function Ψ that is translation and rotation invariant. If a triangle
has been merely translated or rotated, its deformation score should show up as zero.
Let’s see if we can compute a score that will accomplish this.

2.3.2 Removing the Translation (Easy)

One way to encode the transformations that a triangle can undergo to use an affine map:

φ(x̄) =Fx̄ + t

=x.
(2.2)

Here, t ∈ <2 and F ∈ <2×2 in 2D, and t ∈ <3 and F ∈ <3×3 in 3D (see the symbol table
in Appendix A). There are only a few things that an affine transformation can encode:

• Rotation

• Scaling

• Reflection

• Translation.3

We saw that rotation and translation kept showing up and polluting our deformation score,
even though we don’t intuitively consider those as “deformations”. However, scaling
matches our notion of deformation quite nicely. Can we just isolate and measure that?

3You may ask: what about shearing? Wasn’t that in linear algebra class too? That can be written in terms
of rotations and scalings, so we can omit it here.
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As a first step, let’s see if we can carve away the translation, which is relatively easy. The
translation lives entirely in t, so if we perform some manipulation that cuts away that
component, we are done. The canonical way of doing this is to take the derivative with
respect to the rest shape:

∂φ(x̄)

∂x̄
=

∂

∂x̄
(Fx̄ + t)

= F.
(2.3)

Since we are taking the derivative (gradient) of the affine map (deformation), the matrix
F that pops out is called the deformation gradient. This matrix now contains rotation,
scaling, and reflection, but not translation. If we base some sort of deformation score on
F, there is no way that translation can now pollute the result.

2.3.3 Deformation Gradient: Really Important

It is hard to overstate how important the deformation gradient is. Almost everything
we do for the rest of this chapter will deal with F. The variable has an unwieldy name,
and everybody (Bonet and Wood (2008); Bower (2009); Marsden and Hughes (1994);
Belytschko et al. (2013)) uses F to denote it, even though neither “deformation” nor
“gradient” starts with an ‘f’. Ideally the variable would have a snappy name and an
intuitive symbol, but that is not the world we live in.4 We are stuck with F, so just
remember that F is important.

You may be asking yourself: if F is so important, are you going to tell me how to compute
it? Absolutely. It is a little involved, and takes a bit of space, so it has its own section
in Appendix D. Taking for granted that we know how to compute this quantity, let’s
examine what it means.

2.3.4 Removing the Rotation (Not So Easy)

We now haveF, where translation has beenmercifully subtracted off, but scaling, rotation
and reflection remain entangled. How can we remove the rotation? This will turn out to
be more difficult than removing the translation, and there will actually be more than one
answer.

Let’s try to build a simple score function out ofF. The simplest way to boil a matrix down
to a scalar score is to take its squared Frobenius norm, denoted ‖ · ‖F . As with the 2-norm
in §2.3.1, don’t worry if you’re not intimately familiar with this norm. We document it in
detail in Appendix C.1.2, but since this is the first time it is appearing, we will write it

4In geometry processing, it is sometimes denoted with J , presumably because it is the deformation
Jacobian. Better, but still not great.
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out explicitly,

ΨDirichlet = ‖F‖2F

=

2∑
i=0

2∑
j=0

f2
ij ,

(2.4)

where we have numbered the entries of F thusly:

F =

f00 f01 f02

f10 f11 f12

f20 f21 f22

 . (2.5)

This score function is also known as the Dirichlet energy, and it does not get the job done.
Remember, we want the deformation score to return zero when there has been zero
deformation. However, the Dirichlet energy will return zero when all the entries of F are
zero, i.e. F = 0.

If we plug F = 0 into our original deformation function φ(x̄) = Fx̄ + t, it corresponds
to the case where all the points x̄ are crushed into a zero-volume black hole centered at t.
As a scoring function, the Dirichlet energy might be a great black hole detector, but it’s a
crummy deformation measure.

2.3.4.1 A First (Wrong) Attempt

The Dirichlet energy returns a zero when F = 0. What does an energy (score) that
returns zero under zero deformation even look like? Well, if F = I, then certainly no
deformation is occurring. In that case, φ(x̄) = Fx̄+ t = Ix̄+ t = x̄+ t, which is purely a
translation.

Can we design a function that returns zero when F = I? Well, if F = I, then ‖F‖2F = 3.
So, let’s try the scoring function:

ΨNeo-Hookean = ‖F‖2F − 3. (2.6)

This is not a good idea. While it is true that when F = I, the score will equal zero, we
also want zero to be the smallest score possible. Otherwise, the score becomes difficult to
interpret. A zero score means zero deformation, a score greater than zero means some
deformation, but what does a score less than zero mean? Less than zero deformation is
happening?

In the case of ΨNeo-Hookean, if F = 0, then ΨNeo-Hookean = −3. So, it’s a pretty bad
deformation measure. Things get worse if

F =


0 0 0

0
√

3
2 0

0 0
√

3
2

 . (2.7)
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This refers to aWile-E-Coyote-style pancake state, which is definitely not a zero deformation
state. And yet, the ΨNeo-Hookean score returns a zero. Apparently there are many sneaky
configurations that can fool this scoring function into thinking that no deformation
has occurred. We could try to apply a squaring Band-Aid, e.g. ΨNeo-Hookean,Band-Aid =(
‖F‖2F − 3

)2, but this would only address the negative scores problem. The scoring
function would still return zero for the same sneaky deformed states.5

However, for some reason it has the fancy name “Neo-Hookean”, so it must be important.
It has been studied extensively in mechanical engineering and material science for the
last 80 years (Mooney (1940); Rivlin (1948)), because we will see later that if you add a
few important components, it becomes a very interesting deformation measure. But, it’s
not very good in its current form, so let’s put it aside for now.

2.3.4.2 A Second (Still Wrong) Attempt

Next, let’s try something capricious and stupid-looking (C&SL), which I promise will
eventually lead somewhere. Let’s just subtract F and I and take its norm. Then, we are at
least guaranteed that when F = I, our scoring function will equal zero:

ΨC&SL = ‖F− I‖2F . (2.8)

Additionally, since the I is inside the norm, everything gets squared, so there is no
possibility of our function producing meaningless negative scores. We can use identity
B.16 from Appendix B to expand this out to:

ΨC&SL = ‖F− I‖2F
= ‖F‖2F + ‖I‖2F − 2 trF

= ‖F‖2F + 3− 2 trF.

I have assumed that we’re looking at the 3D case, which is why ‖I‖2F = 3. Looking at the
expansion, the score still isn’t great. The first term is the black-hole favoring Dirichlet
energy, which doesn’t do us any favors. Then, we have the constant of 3, which looks
suspiciously similar to our not-great Neo-Hookean energy, followed by a new trF term.
If you haven’t seen a matrix trace in a while, there is a refresher in Appendix C.2. Since
this is its first appearance here, we will write it out explicitly:

trF =

2∑
i=0

fii = f00 + f11 + f22. (2.9)

This scoring function will equal zero when F = I, but when F 6= I, weird things happen.
For example, if F happens to be some rotation matrix,

F(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , (2.10)

5Fun fact: This squaring is equivalent to the (yet-to-be-seen) volume preservation term from the
St. Venant Kirchhoff model. It is still not terribly useful all on its own though.
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then ΨC&SL will return a non-zero score whenever θ is not zero or some multiple of 2π.
But, these would still clearly correspond to deformation-free states! It’s better than a
black-hole detector, but not by much.

Overall, it’s weird that trF is shows up at all in this formula. Since F can be an arbitrary,
non-symmetric matrix, it is not clear that its trace is terribly meaningful outside of
cancelling off ‖F‖2F + 3 in the overly-specific case of F = I.

2.3.4.3 A Third Attempt: St. Venant Kirchhoff

How can we make a version of ΨC&SL that instead equals zero whenever F is a pure
rotation? One way to do this is to exploit a nice linear algebra identity. If F is a pure
rotation, then we know that it must be the case that FTF = I. This follows from the fact
that F−1 = FT when F is orthonormal.

Well, why don’t we compute FTF, subtract off the rotation part, i.e. the I part, and
see what’s left over? These leftovers probably characterize the deformation in some
reasonable way. We can write this down as:

ΨStVK, stretch =
1

2
‖FTF− I‖2F . (2.11)

This is a pretty good idea! The idea is good enough that people have given it a special
name: The St. Venant-Kirchhoff stretching energy, or “StVK, stretch”, for short.6 The
individual components of FTF − I are popular enough that they have special names
and symbols:

C = FTF The right Cauchy-Green tensor
E = 1

2

(
FTF− I

)
Green’s strain

Using these, the energy can be written in a highly compact form:

ΨStVK, stretch = ‖E‖2F . (2.12)

Again, this is a decent way to measure deformation. We’re using F, so the translation
has been subtracted off, and we using an FTF identity to factor off rotation. If we were
going to complain about one thing though, it would be that the scoring function is overly
non-linear. Performing the same expansion as we did for ΨC&SL, we can get:

ΨStVK, stretch = ‖FTF− I‖2F
= ‖FTF‖2F + tr I− 2 tr(FTF).

(2.13)

The leading term, ‖FTF‖2F , is 4th-order, or quartic in F. The F gets squared by FTF, and
then squared again by the norm, ‖ · ‖2F , which makes it 4th order overall. We will see later
that this 4th-order-ness adds additional computational complexity, but in a way that is
not actually desirable.

6Actually, I call it the StVK stretching energy, because it’s the first term (the stretching term) in the StVK
energy. So if you look up “St. Venant-Kirchhoff”, you’ll see this term, plus another one. We’ll take a look at
that other one later.
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2.3.4.4 A Fourth Attempt: As-Rigid-As-Possible

We took advantage of the FTF = I identity, but are there other identities that we
could have used? If we’re specifically concerned with teasing apart the rotation and
non-rotation component of a matrix, the polar decomposition is helpful:

F = RS. (2.14)

Here, the matrix R is the rotational part of F, and S is the non-rotational (scaling)
component of F. This decomposition seems custom-built to solve exactly the problem
we are interested in.

However, you need to be a little careful about using the polar decomposition, because
its classic definition is slightly different from the version we want. Usually R is only
defined as a unitary matrix, not a rotation matrix, so it only needs to satisfy RTR = I.
This means that there could be a reflection lurking somewhere inR, whereas we want
R to be a pure rotation. In our case, if a reflection has to lurk somewhere, we would
prefer that it do so in S. We will call this specific flavor the rotation variant of the polar
decomposition. Details on how to compute this are in Appendix F.

In short: if you end up calling the polar decomposition code in some library, make sure
it is computing the rotation variant, not the traditional version. If it is not, you will need
to write a small wrapper for the library call in the style of Figs. F.1 and F.2.

With that out of the way, let’s assume you can compute the rotation-variant polar
decomposition, and now haveR and S in hand. What can you do with them? In StVK, we
took FTF and subtracted off its rotational component, I. Well, now we have a different
representation for the rotation,R, but can we do the same thing? Subtract the rotation
component off of F, and assume that the leftovers must characterize the deformation
somehow?

The most basic, gee-I-wonder-if-this-will-work way of writing this down is:

ΨARAP = ‖F−R‖2F . (2.15)

There are a few worrying-looking things about this formulation. Usually when you have
twomatrices,multiplying them together is a first thing to try, because you can seewhat the
multiplication is really doing by peeking at the SVD or eigendecomposition. But, instead
of multiplying, we’re subtracting. Can we really just subtract two arbitrary-looking
matrices from each other and get something that isn’t total garbage? They are related via
the polar decomposition, but does that really mean we can just start subtracting these
entries from each other?

Surprisingly, the answer is yes. In fact, this energy function is so indispensable that it
has been given a special name in geometry processing: the As-Rigid-As-Possible (ARAP)
energy (Sorkine and Alexa (2007)). We’ll do a little more analysis of this energy a little
later to see how it is actually more clever than it first appears.
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This energy does not have the “overly non-linear” problem of StVK. If we apply identity
B.16, we get"

ΨARAP = ‖F−R‖2F
= ‖F‖2F + ‖R‖2F − 2 tr(FTR)

= ‖F‖2F + 3− 2 tr(S).

(2.16)

The energy is at most quadratic in F. We will see later that the introduction of R and
S creates some computational challenges, but for the time being, it is undeniable that
ΨARAP is appealingly less non-linear than ΨStVK,stretch.

In physical simulation, the ARAP energy is actually the first term in the popular co-
rotational energy. This energy has been known in mechanical engineering since at least
the 1980s (Rankin and Brogan (1986)), and the ARAP energy corresponds to the specific
mechanical case where Poisson’s ratio is set to zero. This energy was rediscovered by
several graphics researchers in the early 2000s (Müller et al. (2002); Etzmuss et al. (2003);
Irving et al. (2004)), which created some confusion because they each gave it a different
name, such as “stiffness warping” or “rotated linear”. However, these models are all
equivalent, and nowadays everybody seems to have settled on “co-rotational” as the
name for this energy.

2.3.4.5 Summary of Energy (Scoring) Functions

We have now seen a bunch of different energy functions. Let’s summarize their pluses
and minuses:

Energy Pros Cons
Dirichlet Not many. A good black

hole detector?
Doesn’t measure deformation effectively.

Neo-Hookean Returns zero when F = I Returns zero for other configurations too,
and can also return negative scores.

C&SL Returns zero when F = I,
and does not return nega-
tive scores.

Does not return zero under pure rotations.

StVK Returns zero when F is a
pure rotation, and reason-
able scores otherwise.

Overly non-linear (quartic).

ARAP Returns zero when F
is a rotation, reasonable
scores otherwise, and is
quadratic

ThatR term is going to cause trouble.

As I said at the top, removing the rotation from the score is not easy, and there is more
than one strategy. Now that we have a bunch of options, what should we do with them?
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2.4 Force Computation: HowMuch Should I Push Back?
Now that we can measure how deformed we are, we can return to the second question
from §2.2: How much should I push back?

The deformation measure directly generates forces. Surprise! When we were muddling
over different ways to measure deformation, we were actually trying out different elastic
energy potentials. The two are completely equivalent for our purposes. The deformation
measure directly dictates the force response. If you want to design a new material model,
come up with a different way to measure deformation.

To get the forces f on the nodes of a triangle in 2D, we stack the vertices of our triangle
(x0, x1 and x2) into a big vector,

x =

x0

x1

x2

 =



x0

y0

x1

y1

x2

y2


∈ <6, (2.17)

and then take the gradient:

f = −a∂Ψ

∂x
. (2.18)

Here, a is the area of the original triangle at rest. A really tiny deformed triangle the
size of an ant is not going to exert the same force as a deformed triangle the size of the
Empire State Building, so we should scale it.

That’s all well and good, and Eqn. 2.18 looks straightforward, except that all the energies
we looked at in §2.3.4.5 were written in terms of F, not x. In fact, we made a big deal out
of the fact that F doesn’t have all these junky measurement-polluting properties of x,
like translation, and that it was clearly the better primary variable. Having gone down
that path, how are we supposed to take the gradient with respect to x now?

2.4.1 Computing ∂Ψ
∂x

We pushed the computation of F to Appendix D, but we’re going to pull the final result
of that discussion back up here. For a triangle, we pack its original x̄i and deformed xi
vertices into two matrices,Dm andDs, thusly:

Dm =

 x̄1 − x̄0 x̄2 − x̄0

 Ds =

 x1 − x0 x2 − x0

 . (2.19)

The deformation gradient is then a composition of these two:

F = DsD
−1
m . (2.20)
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First the good news: we need the gradient with respect to x, not x̄. If we instead needed
∂Ψ
∂x̄ things would get ugly real fast, because x̄i appears in Dm, which is inside an inverse,
D−1
m , so we’d need to figure out the derivative of a matrix inverse.

Now the bad news: it’s still pretty ugly. Let’s take a really simple energy, ΨDirichlet as an
example:

ΨDirichlet = ‖F‖2F . (2.21)

Here’s what we’re going to have to do:

• Plug F = DsD
−1
m in to ΨDirichlet.

• Multiply everything through to get a massive one-line equation for ‖F‖2F .

• Take the derivative of this massive equation six times, once for each entry in x, and
stack the results into a force vector.

• Hope youdidn’tmake amistake in your derivation somewhere. Port the expressions
into C++, and hope you don’t make a mistake transferring these equations from
paper to code.

2.4.2 Don’t Do It This Way

Let’s gaze at this ugliness for just a minute longer. Just a minute though. After that I have
to look away, and tell you there’s a better way. To start, we can tag each entry in D−1

m

thusly,

D−1
m =

[
m0 m2

m1 m3

]
(2.22)

then we’ll try to multiply out the matrix FTF in anticipation of cramming everything
together for ‖F‖2F .

FTF =

[
m0 m1

m2 m3

] x1 − x0 x2 − x0


T  x1 − x0 x2 − x0

[m0 m2

m1 m3

]

=

[
m0 m1

m2 m3

][
(x1 − x0)T (x1 − x0) (x2 − x0)T (x1 − x0)
(x2 − x0)T (x1 − x0) (x2 − x0)T (x2 − x0)

][
m0 m2

m1 m3

] (2.23)

Just to clean things up, let’s introduce more temporary variables:[
(x1 − x0)T (x1 − x0) (x2 − x0)T (x1 − x0)
(x2 − x0)T (x1 − x0) (x2 − x0)T (x2 − x0)

]
=

[
d0 d1

d1 d2

]
. (Note it’s symmetric)
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Now let’s forge ahead further,

FTF =

[
m0 m1

m2 m3

][
d0 d1

d1 d2

][
m0 m2

m1 m3

]

=

[
m2

0d0 + 2m0m1d1 +m2
1d2 m0m2d0 + (m0m3 +m1m2)d1 +m1m3d2

m0m2d0 + (m0m3 +m1m2)d1 +m1m3d2 m2
2d0 + 2m2m3d1 +m2

3d2

]
,

and then finally smash everything together with the Frobenius norm:

‖F‖2F =
(
m2

0d0 + 2m0m1d1 +m2
1d2

)2
+
(
m0m2d0 + (m0m3 +m1m2)d1 +m1m3d2

)2
(
m0m2d0 + (m0m3 +m1m2)d1 +m1m3d2

)2
+
(
m2

2d0 + 2m2m3d1 +m2
3d2

)2
.

Okay, I have to stop now. Cripes, it hurts to even look at this. The expression is big
enough that it barely fits on two lines. I probably made a mistake in there somewhere;
good luck finding it. Next we’ll have to substitute back in d0 = (x1 − x0)T (x1 − x0) and
from there, x0 = [x0 y0]T , as well as d1, d2,x1 and x2, and then take multiple derivatives
of the resulting hideousness. Also, things get worse in 3D, and the Dirichlet energy isn’t
even that complicated an energy! Things sink to even deeper depths of hideousness for
more complex material models.

You could use a computer algebra system like Mathematica or Matlab’s Symbolic Toolkit
to handle all this. That would just offload the ugliness generation to the computer, and
the final result would still be ugly. Surely there is a better way.

2.4.3 What Now?

There is a better way, which we will describe in the next chapter. When we do, you will
see that the forces are now cleaner to compute, but the force gradients (a.k.a the energy
Hessians) are still ugly.

You may be tempted to take the coward’s way out here. All of this ugliness started
because I insisted that we use F to compute our deformation measure instead of x. If
we had just stuck to x, we wouldn’t be in this mess, because computing ∂Ψ

∂x when Ψ is
written purely in terms of x is much easier. Just look at this gorgeous-looking spring-mass
energy:

Ψ =
µ

2
‖x− x0‖22 (2.24)

∂Ψ

∂x
= µ(x− x0). (2.25)

SOEASY.Don’t be seduced though. If allowourselves be suckeddown into thisCharybdis,
we’ll be limiting ourselves to the world of spring-mass models, and the richer universes
of squishing and squashing volumetric responses will be inaccessible. Let’s not do that;
let’s see how far we can take this F thing.
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Chapter 3

Computing Forces the Tensor Way

If you’re just joining us after skipping Chapter 1, the following is our current predicament.
We are trying to compute forces, f = a∂Ψ

∂x , but it turns out that directly taking the x
derivative when your energy Ψ is based on the deformation gradient F is extremely ugly.
It’s ugly enough that we are starting to question whether using an F-based energy is
even a good idea at all. Now you’re all caught up, so on with the show.

We will clean things up using an application of the chain rule that separates ∂Ψ
∂x into two

components:
∂Ψ

∂x
=
∂Ψ

∂F

∂F

∂x
. (3.1)

Each piece, ∂Ψ
∂F and ∂F

∂x , is relatively clean in isolation. The ugliness we saw in the previous
chapter appears if you try to bite off more than you can chew and handle both pieces
simultaneously. However, if you haven’t worked with higher-order tensors before1, you’ll
run into trouble the moment you start trying to work out these terms. The whole thing
will look like a dirty calculus trick that some professor played on you where he2 left all
the difficult details out. Let’s look at the details now.

3.1 Thinking About 3rd-Order Tensors

The first term in Eqn. 3.1, the ∂Ψ
∂F term, is relatively easy. Since Ψ ∈ < and F ∈ <3×3 the

derivative is just a matrix:

∂Ψ

∂F
=


∂Ψ
∂f00

∂Ψ
∂f01

∂Ψ
∂f02

∂Ψ
∂f10

∂Ψ
∂f11

∂Ψ
∂f12

∂Ψ
∂f20

∂Ψ
∂f21

∂Ψ
∂f22

 ∈ <3×3. (3.2)

1Running a few TensorFlow Python scripts definitely doesn’t count. If you have actually worked with
tensors before, feel free to skip ahead to §3.4.

2That would be me.
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The fij scalars are the entries of F, as described in Appendix A. The result is clearly a
3× 3 matrix, also known as a 2nd-order tensor.

The confusion begins whenwe try to compute ∂F
∂x . SinceF ∈ <

3×3 is a matrix and x ∈ <12

is a vector, what form should the derivative take? Let’s look at x0, the first entry of x. We
can take the derivative of Fwith respect to that:

∂F

∂x0
=


∂f00

∂x0

∂f01

∂x0

∂f02

∂x0

∂f10

∂x0

∂f11

∂x0

∂f12

∂x0

∂f20

∂x0

∂f21

∂x0

∂f22

∂x0

 ∈ <3×3. (3.3)

Already, the result is a matrix. What are we supposed to do with the next derivative, ∂F∂x1
,

and the one after that, and the one after that? Eventually I’ll have a pile of 12 matrices,
but what am I supposed to do with them? Is there some standard way of arranging these
matrices together?

The answer is no.3 The problem is that we now have a 3rd-order tensor, which usually doesn’t
show up in an introductory linear algebra texts. If you look in texts on higher-order
tensor manipulation (e.g. Golub and Van Loan (2013); Simmonds (2012); Kolda and
Bader (2009)), they describe a variety of ways of arranging this pile of matrices, some of
which have important-sounding names like Einstein notation. Surely that’s the one? If it’s
good enough for Albert Einstein, it’s good enough for us? In fact, it’s not; we should use
the right tool for the right situation, and we’re not looking at relativity right now.

 

Figure 3.1.: We could take each matrix along the top and stack them all into a cube. For
the full ∂F∂x there are 12 slices, but hopefully you get the picture with just 4.
We’re not going to do it this way though.

The dimension of the derivative is ∂F
∂x ∈ <

3×3×12, where the third dimension is the big
giveaway that we’re looking at a 3rd-order tensor. Many people think of this is as a cube

3Some of your colleagues may dispute my claim and say that there is definitely a standard notation for
tensors that everybody who’s anybody uses. I would recommend being suspicious of any colleague who tries
to make such an intimidation-based argument.
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of matrices. We can take our pile of 12 matrices, and stack them like a deck of cards into a
cube (Fig. 3.1). Just to sow further confusion, if you look at my paper, Kim and James
(2012), you’ll see that I decided to use this mental representation in that paper too.4

 

Figure 3.2.: We prefer to think of 3rd-order tensors as a vector of matrices. It’s like a long
cutting board on a kitchen counter, with the matrices stacked along it, like
individually-wrapped slices of (festively-colored) American cheese. There
should be 12 matrices in total, but I only show 4 because if I show all 12
they’d be so small you couldn’t read the writing on them.

We’re not going to take that view here. Instead, we’re going to think of 3rd-order tensors
as a vector of matrices. Think of the ∂F

∂x tensor like a big wooden cutting board on your
kitchen counter. Each matrix ∂F

∂xi
is then placed in order, along a line, down the board

(Fig. 3.2), like slices of individually-wrapped American cheese. When we write out a
3rd-order tensor explicitly, we’ll use the square brackets to imitate our mental picture of
a cutting-board-with-cheese. For example:

[
a c
b d

]
[
e g
f h

]
[
i k
j l

]


=



[
A
]

[
B
]

[
C
]


. (3.4)

On the right hand side, we wrapped each matrix in a [·] as well. This is to distinguish the
3rd-order tensor from the more familiar 2nd-order block matrix.

4Cubes are a good way to think about things when you’re doing model reduction, but that’s not what
we’re doing right now.
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3.2 Multiplication With 3rd-Order Tensors

Once we have a mental picture of the 3rd-order tensor in place, how should we think of
stuff like multiplication? This is pretty important, since once of our initial claims was
that the chaining ∂Ψ

∂x = ∂Ψ
∂F

∂F
∂x would make things easier, and so far it sure doesn’t look

easier. What’s the product of ∂Ψ
∂F , a matrix, and ∂F

∂x , a cutting board?

This is the part where you get annoyed with the professor for gliding past an important
detail. If we’re writing down rock-solid, 100%-corresponds to the actual computation
you’ll be doing we should really write:

∂Ψ

∂x
=
∂F

∂x
:
∂Ψ

∂F
, (3.5)

where the ‘:’ is a double-contraction. If you have not seen double-contractions before,
we review what it means to contract two matrices together in Appendix C.3. The key
takeaway from that section is:

A : B =

[
a0 a2

a1 a3

][
b0 b2
b1 b3

]
= a0b0 + a1b1 + a2b2 + a3b3. (3.6)

However, ∂F∂x is a 3rd-order tensor, not a matrix. What does a 3rdvs. 2nddouble-contraction
mean? We define it as:

A : B =



[
a0 a2

a1 a3

]
[
a4 a6

a5 a7

]
[
a8 a10

a9 a11

]



[
b0 b2
b1 b3

]
=

 a0b0 + a1b1 + a2b2 + a3b3
a4b0 + a5b1 + a6b2 + a7b3
a8b0 + a9b1 + a10b2 + a11b3

 . (3.7)

We have now used the blackboard font A to denote a higher-order tensor for the first
time. We will use these to denote tensors that are 3rd-order and above; the order should
be (I hope) evident from the context.

To form another mental picture, ∂Ψ
∂F is a cheese slice off to the side that has the exact

same size as those on our cutting board, ∂F∂x . We then perform a double-contraction of
this new slice against all of those on the cutting board (Fig. 3.3). The result is then a good
ole’ vector.

3.3 Multiplication With Flattened Tensors
Just to drive you crazy, there’s a second, more conventional way to write all this down.
Any tensor, be it 3rd-order, 4th-order, or 100th order, can always be flattened or vectorized
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Figure 3.3.: Double-contraction of a 3rd-order tensor against a 2nd-order tensor is like
taking a cheese slice (right) and double-contracting it against each multi-
colored slice on the cutting board (left). The result here would be an <4

vector.

back into the familiar 2nd-order matrix form. We’re more-or-less going to follow the
convention of Golub and Van Loan (2013) here.

Unfortunately, it will turn out that both the tensor and matrix representations are useful. Just
like you had to learn both radians and degrees for trigonometric functions, you’re going
to have to learn both the tensor and flattened versions here. It will be worth it, I promise.

We introduce the vectorization operator vec(·) to convert any matrix to a vector, and any
higher-order tensor to a matrix. First up, this is how it converts a matrix to a vector:

vec (A) = vec

[a0 a2

a1 a3

] =


a0

a1

a2

a3

 (3.8)

The important pattern to notice is that we stacked the columns on top of each other. We did
not stack the rows, though we very well could have. This is merely the convention that
we have found most useful. Getting this convention right is sufficiently important that
I’m just going to go ahead and give you the Matlab and C++ code that does this the right
way (Fig. 3.4). If you’re using Octave, it has vec built-in already, and it follows the same
convention we do.
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1 function [x] = vec(A)
2 [rows cols] = size(A);
3 x = reshape(A, rows * cols, 1);
4 end

1 static Vector9 flatten(const Matrix3x3& A)
2 {
3 Vector9 flattened;
4 int index = 0;
5 for (int y = 0; y < 3; y++)
6 for (int x = 0; x < 3; x++, index++)
7 flattened[index] = A(x, y);
8 return flattened;
9 }

Figure 3.4.: Our matrix flattening convention, in Matlab and C++.

Next up, we define the following convention for 3rd-order tensors:

vec(A) = vec



[
A
]

[
B
]

[
C
]


=
[
vec (A) vec (B) vec (C)

]
. (3.9)

First we unfurl the matrices in the 3rd-order tensor into a row, and then vectorize them
all in turn. Here’s a concrete example:

vec



[
a0 a2

a1 a3

]
[
a4 a6

a5 a7

]
[
a8 a10

a9 a11

]


=

vec

[
a0 a2

a1 a3

]
vec

[
a4 a6

a5 a7

]
vec

[
a8 a10

a9 a11

] =


a0 a4 a8

a1 a5 a9

a2 a6 a10

a3 a7 a11



(3.10)
It may seem a little antithetical to the convention that we don’t just stack everything into
one long vector. All the matrix multiplies wouldn’t work out in that case though, which
would mess up your day even worser.

Finally, let’s look at the flattened version of that A : B double-contraction we saw in
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Eqn. 3.7:

(vec A)T vecB =


vec



[
a0 a2

a1 a3

]
[
a4 a6

a5 a7

]
[
a8 a10

a9 a11

]





T

vec

[
b0 b2
b1 b3

]
(3.11)

=


a0 a4 a8

a1 a5 a9

a2 a6 a10

a3 a7 a11


T 

b0
b1
b2
b3

 (3.12)

=

 a0b0 + a1b1 + a2b2 + a3b3
a4b0 + a5b1 + a6b2 + a7b3
a8b0 + a9b1 + a10b2 + a11b3

 . (3.13)

The result is the same as Eqn. 3.7, but arrived at (at least in the final step) through a
conventional matrix multiply. It works!

3.4 Computing Forces (Finally)
With all this tensor stuff in place, we can finally compute some forces. Once again, the
force is f = −a∂Ψ

∂x , so the equation we need to compute is:

∂Ψ

∂x
=
∂F

∂x
:
∂Ψ

∂F
. (3.14)

The trick is that the 3rd-order tensor, ∂F∂x , has a static, simple, and energy-independent
structure that we can code up once and forget about. The other term, ∂Ψ

∂F , which will
have a simple and clean structure. If you want to implement a new energy, all you need
to do is derive a new ∂Ψ

∂F .

3.4.1 Computing the ∂F
∂x Tensor

To see where x appears in F, we’re going to use one of the expressions we derived in
Appendix D:

F = DsD
−1
m (3.15)

=

 x1 − x0 x2 − x0 x3 − x0


 x̄1 − x̄0 x̄2 − x̄0 x̄3 − x̄0


−1

. (3.16)
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Fortunately we’re differentiating with respect to x =


x0

x1

x2

x3

 and not x̄ =


x̄0

x̄1

x̄2

x̄3

, so we

don’t have to figure out how to take the derivative of a matrix inverse (yuck). In the end,
we’re going to get a bunch of expressions that look like:

∂F

∂xi
=
∂Ds

∂xi
D−1
m . (3.17)

We already have D−1
m in hand, and ∂Ds

∂xi
will work out to a bunch of simple matrices.

There will be a lot of them (twelve!), but they will be simple. It takes a lot of space to list
these, so instead I’ve stashed it all in Appendix E.

We could compute things the purely matrix way as well,

∂Ψ

∂x
= vec

(
∂F

∂x

)T
vec

(
∂Ψ

∂F

)
. (3.18)

There’s C++ code in Fig. E.1 that explicitly lays out the flattened version of vec
(
∂F
∂x

)
for

you. I’ve had to derive this matrix several times already in my lifetime, and I’m getting a
little tired of it, so I’m caching it here for posterity. You’re welcome, Future Me.

3.5 Dirichlet Forces: So Easy
Back in §2.4.2, we tried to compute forces for the Dirichlet energy,

ΨDirichlet = ‖F‖2F ,

but gave up because the expressions rolled out of control the moment you tried to
differentiate an F-based energy using x. We’ve now skimmed off all the difficulty and
distilled it into ∂F

∂x . All that’s left is to take ∂Ψ
∂F , and this is probably pretty easy for an

F-based energy, right?

The matrix ∂Ψ
∂F is also known as the first Piola-Kirchhoff stress tensor, which is an

unwieldy name, so we abbreviate it to the PK1, and sometimes write it asP(F). The PK1
of the Dirichlet energy is:

∂ΨDirichlet
∂F

= P(F) = 2F. (3.19)

SO EASY. It’s almost as easy as computing the forces of the spring-mass system in
Eqn. 2.25. In fact, it looks like an intro-to-calculus scalar derivative. The FTF expression
kind of looks like the matrix version of F2, and then we took the derivative to get 2F.
There are indeed a bunch of matrix calculus identities that look like this, and a few useful
ones are listed in Appendix B. Now to compute the forces, all we do is call the C++ code
I gave you in Fig. E.1, and multiply it by vec (2F).
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3.6 Other Forces: Still Pretty Easy
If we want to compute the forces for some of the other energies we looked at, it becomes
straightforward.

3.6.1 St. Venant Kirchhoff, Stretching Only

Let’s look at the stretching term for the St. Venant-Kirchhoff model from before:

ΨStVK, stretch = ‖E‖2F , (3.20)

where E = 1
2

(
FTF− I

)
. If we learned any lesson before, it’s that we should take the

derivative with respect to whatever basic variable the energy is written in terms of (F,
for the Dirichlet case), and then bake out all the difficult change-of-variable stuff into
some other tensor, ∂F∂x .

The basic variable for this energy is sure seems like E, not F. We could indeed write
things out as ∂Ψ

∂x = ∂Ψ
∂E

∂E
∂x . Then we’d have to derive a new change-of-basis tensor, ∂E∂x . But,

once we had that in hand, computing ∂Ψ
∂E , otherwise known as the second Piola-Kirchhoff

stress tensor (PK2)would be really easy:

∂ΨStVK, stretch
∂E

= E. (3.21)

Before we go down the PK2 road though, you should know that StVK is the only energy
that really uses E. All the other energies5 use F. So, before we build a customized ∂E

∂x
tensor for StVK, let’s see how difficult it is to go down the F road.

ΨStVK, stretch =
1

4
‖FTF− I‖2F

=
1

4

(
‖FTF‖2F + tr I− 2 tr(FTF)

)
=

1

4

(
‖FTF‖2F + tr I− 2‖F‖2F

)
.

(3.22)

We already know how to take the derivative of ‖F‖2F , since it’s just the Dirichlet energy,
and the derivative of ‖FTF‖2F is in Appendix B.

PStVK, stretch(F) =
1

4

(
4FFTF− 4F

)
= F

(
FTF− I

)
= FE

(3.23)

STILL PRETTY EASY. The pattern holds here where ‖FTF‖2F looks suspiciously like a
matrix version of F4, and its derivative 4FFTF looks an awful lot like 4F3.

5The ones I care about, anyway.
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3.6.2 The Complete St. Venant Kirchhoff

Up until now, we’ve only looked at the stretching term from StVK, but now is a good
moment to look at the complete energy:

ΨStVK = µ‖E‖2F +
λ

2
(trE)2 (3.24)

The ‖E‖2F term we’ve been examining is there of course, but a new volume preservation
term (trE)2 has been added6. The constants µ and λ are present to you can tell the model
how much relative stretching resistance vs. volume preservation you want. The PK1 is
then:

PStVK(F) = µFE + λ (trE)F. (3.25)

To arrive at this, we used identities B.12 and B.32 from Appendix B. Some minor
gymnastics are required if you’re not used to this sort of thing, but the final expression is
still short and easy to digest.

3.6.3 As-Rigid-As-Possible

The As-Rigid-As-Possible (ARAP) energy can be expanded to:

ΨARAP =
µ

2
‖F−R‖2F (3.26)

=
µ

2

(
‖F‖2F + ‖R‖2F − 2 tr

(
FTR

))
(3.27)

=
µ

2

(
‖F‖2F + ‖R‖2F − 2 trS

)
(3.28)

We used identity B.16 and the polar decomposition F = RS =⇒ S = FTR (since S is
symmetric) to arrive at this form. The PK1 is then:

PARAP(F) = µ(F−R) (3.29)

We used identities B.19 anad B.34 to arrive at this expression. This one looks quite
appealing! We just extract the expression inside the Frobenius norm, and that becomes
the PK1. This is extremely similar to what we saw in §2.4.3 with the spring-mass system,
where we just extracted the vector from inside the 2-norm. This is not a coincidence,
because as we’ll see later, ARAP has quite a strong claim on the title of “Most-Spring-
Mass-Like in F-based World”.

3.6.4 The Many Forms of Neo-Hookean

Back in §2.3.4.1, we looked at the Neo-Hookean energy:

ΨNeo-Hookean = ‖F‖2F − 3. (3.30)
6We’ll see later that it doesn’t actually preserve volume that well if you deform the object too much.

33



3. Computing Forces the Tensor Way

If we get the PK1 of this energy,
PNeo-Hookean(F) = 2F, (3.31)

it’s exactly the same PK1 as the Dirichlet energy. The only difference between this energy
and Dirichlet was the minus three, and that gets burned off under differentiation. From
any practical force-generating standpoint, this energy is equivalent to Dirichlet.

Why does it even exist then? In the original paper by Mooney (1940), an additional
equation appeared in the form of a hard constraint, detF = 1. We’re not going to look at
methods like this, because this constraint is too severe for the kinds of deformations we
see in computer animation.

There are many energies that call themselves “Neo-Hookean”, so we’ll look at one of the
more popular ones from Bonet and Wood (2008):

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2
. (3.32)

I’ve put this off as long as possible, but here we are starting to use the shorthand of
J = detF. This detF term is extremely important because it tells us how much volume
has or hasn’t been preserved. As we’ll see later, any energy that claims to be “volume
preserving” but doesn’t contain detF is just a sham pretender to the throne.

Since detF is going to start showing up a lot, it’s time we started using a symbol that’s
simpler to read, and J is extremely common elsewhere in the literature (e.g. Bonet and
Wood (2008), Marsden and Hughes (1994), Bower (2009)).

The PK1 of ΨBW08 is then:

PBW08(F) = µ

(
F− 1

J

∂J

∂F

)
+ λ

log J

J

∂J

∂F
. (3.33)

The new term that appears is ∂J
∂F , the gradient of J . In 3D, this term can be written in

terms of the columns of F,

F =

 f0 f1 f2

 . (3.34)

The gradient of J is then the pair-wise cross-products of these columns,

∂J

∂F
=

 f1 × f2 f2 × f0 f0 × f1

 . (3.35)

This identity is important enough that we stacked it into Appendix B, so when you need
it later, you can find it there too. Once you have this identity in hand, deriving the PK1
for an energy that contains a detF ≡ J term is not a big deal. Take scalar derivatives like
usual, and then you finally hit a ∂J

∂F you can stop, because we’ve got an identity for that.

As we’ll see later, the ∂J
∂F term appears in lots of places. Just to underscore how important

it is, I’m giving you a Matlab implementation in Fig. 3.5
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1 function [final] = gradientJ(F)
2 f0 = F(:,1);
3 f1 = F(:,2);
4 f2 = F(:,3);
5 final = [cross(f1,f2) cross(f2,f0) cross(f0,f1)];
6 end

Figure 3.5.: Matlab/Octave code for the 3D version of ∂J∂F from Eqn. 5.6.

3.7 What Now?
We’ve now seen how to compute forces the tensor way. This is enough to get a simulator
off the ground that does explicit time integration, but that’s not good enough. We want
implicit timestepping, since the Fizt integrator from Baraff and Witkin (1998), and the
large timesteps it enables, is our target deployment.

For that, we need force gradients, i.e. ∂f∂x . All the tensor stuff we just saw made force
computation easier and prettier, but all the ulcer-inducing ugliness comes rushing back
the moment we try to take a force gradient. It’ll take some more work to make force
gradient computation equivalently easy and pretty. Let’s take a look at that next.
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Chapter 4

Computing Force Gradients the Tensor
Way

If you’re just joining us, we’re looking at Baraff andWitkin (1998)-style implicit integration
and how it uses force gradients to enable large, stable timesteps. If you thought that
computing forces directly from the strain energy was painful,

f = −v∂Ψ

∂x
, (4.1)

then, hoo nelly, are these force gradients excruciating:

∂f

∂x
= −v∂

2Ψ

∂x2
. (4.2)

The way we cleaned everything up in Chapter 3 was to apply the chain rule,

∂Ψ

∂x
=
∂F

∂x
:
∂Ψ

∂F
, (4.3)

which baked all the difficulty into an energy-agnostic tensor ∂F
∂x that we only have to

derive once. Then for each energy model, we only have to deal with the relatively easier
∂Ψ
∂F , a.k.a the first Piola-Kirchhoff stress tensor (PK1).

Can we do something similar for the force gradient? Something like

∂2Ψ

∂x2
=
∂F

∂x

T ∂2Ψ

∂F2

∂F

∂x
(4.4)

sure seems promising. But just like in Chapter 3, you’ll discover that the whole thing
starts looking like a clear-as-mud, dirty professor trick as soon as you try to apply this
equation. Let’s look at it in more detail, because it’ll take some work to actually use it.
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4.1 4th-order Tensors

The first observation that will make you curse the sky is that ∂2Ψ
∂F2 is a 4th-order tensor. To

see this more clearly, recall that we started writing ∂Ψ
∂F as the matrix P(F) ∈ <3×3. We

can write ∂2Ψ
∂F2 as ∂P

∂F
1, which is the derivative of a matrix with respect to a matrix. We can

write this out explicitly as:

∂P

∂F
=



[
∂P
∂f00

] [
∂P
∂f01

] [
∂P
∂f02

]
[
∂P
∂f10

] [
∂P
∂f11

] [
∂P
∂f12

]
[
∂P
∂f20

] [
∂P
∂f21

] [
∂P
∂f22

]

 . (4.5)

As in the 3rd-order case, we put brackets around each ∂P
∂fij

to emphasize that they are in
the entries in a higher-order tensor, not the blocks in a traditional 2nd-order matrix.

Just like the 3rd-order tensor was a vector of matrices, a 4th-order tensor is a matrix of
matrices. Instead of a cutting board containing a line of cheese slices, the cutting board
now has cheese slices arranged in a grid (Fig. 4.1).

 

Figure 4.1.: A 4th-order tensor: like a cutting board covered with a grid of individually
wrapped slices of American cheese. A matrix of matrices.

A brief digression: this mental picture does indeed generalize to even higher orders. If
you ever needed the next derivative ∂3Ψ

∂F3 , you would need to compute a 6th-order tensor,
i.e. a matrix of matrices of matrices.2 You can just stack another layer on top (Fig. 4.2).
For 8th-order, you would take four copies and arrange them in a grid again. And so on to
∞th-order, like a giant fractal pagoda.

1The (F) argument of P has been dropped for brevity.
2We won’t cover it here, but I have needed this before, so you may encounter a case where you do too.
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Figure 4.2.: A 6th-order tensor: we take the cutting boards of cheese from Fig. 4.1, make
four copies, get an even bigger cutting board for underneath, and arrange
them all into another grid. So much cheddar.

Now back to the 4th-order case. Double-contraction looks similar to the 3rd-order case,

[
a0 a2

a1 a3

] [
a8 a10

a9 a11

]
[
a4 a6

a5 a7

] [
a12 a14

a13 a15

]
 :

[
b0 b2
b1 b3

]
=

[
(a0b0 + a1b1 + a2b2 + a3b3) (a8b0 + a9b1 + a10b2 + a11b3)
(a4b0 + a5b1 + a6b2 + a7b3) (a12b0 + a13b1 + a14b2 + a15b3)

]
,

(4.6)
except instead of producing a vector, the results are arranged into a matrix.

If we want to flatten the following tensor,

C =


[

1 3
2 4

] [
9 11
10 12

]
[

5 7
6 8

] [
13 15
14 16

]
 (4.7)

=

[
[C00] [C01]
[C10] [C11]

]
(4.8)

then we first flatten in column-wise order, and then each matrix in turn:

vec(C) =

 vec(C00) vec(C10) vec(C01) vec(C11)

 (4.9)

=


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

 . (4.10)

38



4. Computing Force Gradients the Tensor Way

One thing that we have not defined is how to multiply a 4th-order tensor with a 3rd-order
tensor. Rather than do that, we are instead going to flatten everything so that it all
reduces to a matrix-matrix multiply. Not only will this be easier to think about, but we
will see some interesting structures appear.

4.2 Computing Force Gradients
We now have enough operators in hand that we can write the useful-looking chain rule
that we saw before in more concrete terms:

∂2Ψ

∂x2
= vec

(
∂F

∂x

)T
vec

(
∂2Ψ

∂F2

)
vec

(
∂F

∂x

)
. (4.11)

We already know how to compute vec
(
∂F
∂x

)
from Appendix E, and in fact have the

C++ code for it Fig. E.1. The only term that remains to be derived is vec
(
∂2Ψ
∂F2

)
. We will

abbreviate this matrix as H, because it represents the energy Hessian.

4.2.1 Dirichlet Hessian: So Easy

Let’s try it out on the simplest energy we know, the Dirichlet energy:

ΨDirichlet = ‖F‖2F
∂ΨDirichlet

∂F
= P = 2F.

Each entry ∂P
∂fij

in the 4th-order tensor ∂P∂F is then:

∂P

∂fij
= 2

∂F

∂fij
(4.12)

What does each ∂F
∂fij

look like? There’s a lot of them (nine), but they are all quite simple:

∂F

∂f00
=

 1 0 0
0 0 0
0 0 0

 ∂F

∂f01
=

 0 1 0
0 0 0
0 0 0

 ∂F

∂f02
=

 0 0 1
0 0 0
0 0 0


∂F

∂f10
=

 0 0 0
1 0 0
0 0 0

 ∂F

∂f11
=

 0 0 0
0 1 0
0 0 0

 ∂F

∂f12
=

 0 0 0
0 0 1
0 0 0


∂F

∂f20
=

 0 0 0
0 0 0
1 0 0

 ∂F

∂f21
=

 0 0 0
0 0 0
0 1 0

 ∂F

∂f22
=

 0 0 0
0 0 0
0 0 1

 .
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Each just has a one at the corresponding entry (i, j). Here’s what we get when we flatten
this out:

vec
∂F

∂F
=



1
1

1
1

1
1

1
1

1


(4.13)

IT’S JUST IDENTITY. SO EASY. The Hessian of the Dirichlet energy is then:

vec

(
∂P

∂F

)
= 2I9×9. (4.14)

When we flatten out Hessians, we’ll often see patterns like this appear. Let’s see how far
we can take it.

4.2.2 Neo-Hookean: Not So Easy

Let’s look at the Bonet and Wood (2008) version of Neo-Hookean again:

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2 (4.15)

P = µ

(
F− 1

J

∂J

∂F

)
+ λ

log J

J

∂J

∂F
. (4.16)

We’re going to have to derive several grisly expressions to get its flattened Hessian, but
it will all be worth it, because these same expressions will appear in lots of different
energies. In the moment, this will all feel like some sadistic exercise, but in the end, I
promise that we will have forged a tool that can be used over and over.

Let’s start by trying to compute onematrix-valued entry in its 4th-order tensor:

∂P

∂fij
= µ

∂F

∂fij
+
µ

J2

∂J

∂fij

∂J

∂F
− µ
J

∂2J

∂F∂fij
+
λ log J

J

∂2J

∂F∂fij
− λ log J

J2

∂J

∂fij

∂J

∂F
+
λ

J2

∂J

∂fij

∂J

∂F
.

Not very clean. However, if we move things around, we can make things slightly nicer:

∂P

∂fij
= µ

∂F

∂fij
+

[
µ+ λ(1− log J)

J2

]
∂J

∂fij

∂J

∂F
+

[
λ log J − µ

J

]
∂2J

∂F∂fij
.

It’s still not that nice, so I’ll go ahead and put boxes around the non-scalar terms you
should care about:

∂P

∂fij
= µ

∂F

∂fij
+

[
µ+ λ(1− log J)

J2

]
∂J

∂fij

∂J

∂F
+

[
λ log J − µ

J

]
∂2J

∂F∂fij
.
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The µ ∂F
∂fij

term is relatively friendly-looking. If we enumerate all nine copies of this
in full 4th-order tensor form, we get µ∂F∂F , and if we flatten that out, we get the same
easy-looking term as the Dirichlet energy: vec

(
µ∂F∂F

)
= µI9×9.

There are two other scalar coefficients:
[
µ+λ(1−log J)

J2

]
and

[
λ log J−µ

J

]
. They’re not pretty,

but at least they’re scalar-valued. If we can figure out what the flattened versions of the
4th-order tensors ∂J

∂fij
∂J
∂F and ∂2J

∂F∂fij
look like, then we’ll have the complete 9× 9 matrix

in hand, and we’re in business.

4.2.2.1 The Gradient of J

First up, the ∂J
∂fij

∂J
∂F term. Let’s call it GJ in 4th-order form, since it involves two Gradients

of J :

GJ =



[
∂J
∂f00

∂J
∂F

] [
∂J
∂f01

∂J
∂F

] [
∂J
∂f02

∂J
∂F

]
[
∂J
∂f10

∂J
∂F

] [
∂J
∂f11

∂J
∂F

] [
∂J
∂f12

∂J
∂F

]
[
∂J
∂f20

∂J
∂F

] [
∂J
∂f21

∂J
∂F

] [
∂J
∂f22

∂J
∂F

]

 . (4.17)

Writing this out in its full gruesome form doesn’t add much, does it? However, when we
perform the vectorization, something friendlier-looking appears:

vec GJ = vec

(
∂J

∂F

)
vec

(
∂J

∂F

)T
. (4.18)

It’s just the outer product of the gradient of J ! If you don’t remember what outer products
look like, don’t fret, they’re reviewed in Appendix C.4. With this in hand, we can go
ahead and define

gJ = vec

(
∂J

∂F

)
,

i.e. the flattened gradient of J , and make the whole thing look even cleaner:

vec GJ = gJg
T
J . (4.19)

The flattened version of that gnarly-looking
[
µ+λ(1−log J)

J2

]
∂J
∂fij

∂J
∂F from before is just:[

µ+ λ(1− log J)

J2

]
gJg

T
J .

The scalar in front is still ugly, but the rest now looks more like standard linear algebra.

4.2.2.2 The Hessian of J

Next up, the ∂2J
∂F∂fij

term, the Hessian of J . We will refer to its full 4th-order form as ∂2J
∂F2 .
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This Hessian is a little trickier, because it has a different form in 2D and 3D. Let’s look at
the 2D version first, because a really easy structure appears in that case.

The 2D version: Remember that J = detF, so in 2D

J = f00f11 − f10f01,

and the gradient then becomes

∂J

∂F
=

[
f11 −f10

−f01 f00

]
.

The 4th-order tensor can then be written out:

∂2J

∂F2
=



[
0 0
0 1

] [
0 0
−1 0

]
[

0 −1
0 0

] [
1 0
0 0

]
 . (4.20)

The flattened form is then a really simple anti-diagonal matrix:

vec

(
∂2J

∂F2

)
=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 . (4.21)

Just like we abbreviated the gradient of J to gJ , let’s call this matrix HJ , since it’s the
Hessian of J :

HJ = vec

(
∂2J

∂F2

)
. (4.22)

That’s the 2D version.

The 3D version: In 3D, things get messier, but it also reveals a more interesting structure.
For this version, we first to have to define an operator that converts a vector into a
cross-product matrix:

x̂ =

 0 −x2 x1

x2 0 −x0

−x1 x0 0

 . (4.23)

The full 3D Hessian takes a long time to work out, but after lots of symbolic-machete-
slashing, we find this form:

HJ =

 03×3 −f̂2 f̂1
f̂2 03×3 −f̂0
−f̂1 f̂0 03×3

 . (4.24)
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1 function [H] = hessianJ(F)
2 zero3 = zeros(3,3);
3 f0 = F(:,1);
4 f1 = F(:,2);
5 f2 = F(:,3);
6 f0hat = crossMatrix(f0);
7 f1hat = crossMatrix(f1);
8 f2hat = crossMatrix(f2);
9 H = [ zero3 -f2hat f1hat;

10 f2hat zero3 -f0hat;
11 -f1hat f0hat zero3];
12 end
13

14 function [final] = crossMatrix(f)
15 final = [ 0 -f(3) f(2);
16 f(3) 0 -f(1);
17 -f(2) f(1) 0];
18 end

Figure 4.3.: Matlab/Octave code for the 3D version of vec
(
∂2J
∂F2

)
= HJ from Eqn. 5.7.

The 0s above are all 3× 3 zero matrices, and fi refer to the columns of F. Now we see
the interesting structure. The matrixHJ is full of cross-product matrices, but compare
its structure to Eqn. 4.23. Its block structure follows the cross-product form! It’s a block
cross-product matrix of cross-product matrices, or in other words a fractal cross-product. What
does it mean? Is there some basic property of Kronecker products that gives rise to this
structure? I’m not sure. Sure is interesting though.3

Coding this matrix up right can be somewhat delicate, so I’ve provided a reference
Matlab implementation for you in Fig. 4.3.

4.2.2.3 The Full Hessian

Coming back to the Hessian of the Neo-Hookean energy:

∂P

∂fij
= µ

∂F

∂fij
+

[
µ+ λ(1− log J)

J2

]
∂J

∂fij

∂J

∂F
+

[
λ log J − µ

J

]
∂2J

∂F∂fij
.

Now we have all the pieces to write the boxed terms out in flattened form:

vec

(
∂P

∂F

)
= µI9×9 +

[
µ+ λ(1− log J)

J2

]
gJg

T
J +

[
λ log J − µ

J

]
HJ . (4.25)

Not too bad. We’re still stuck with the ugly scalar coefficients, but at least the matrix
terms, I9×9, gJ and HJ all have compact forms. We can definitely build this, left- and
right-multiply it with ∂F

∂x , and get the force gradient.
3To my knowledge, our paper Smith et al. (2018) was the first to observe this structure. Maybe 4D

versions of J will create another fractal level? Sounds like a good homework problem.
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You may start to worry here: am I going to have to go through this process for every
stinking energy? Will there be some new and potentially more hideous g∗ and H∗ terms
that I’ll need to derive every single time? Mercifully, the answer is no.

As we’ll see later, there are a very small number of g andH terms that can ever appear,
and gJ and HJ are actually the worst of them. Ugliness will appear elsewhere, but it
won’t be because there’s an infinite explosion of g- and H-like terms that you need to
tediously arrange every single time.

4.2.3 St. Venant-Kirchhoff: Things Get Worse

Let’s try another energy. This time, we’ll do St. Venant-Kirchhoff, but only the stretching
term, because even then, things will get ugly really fast. The energy and its PK1 are:

ΨStVK, stretch = ‖E‖2F
P = FE = F(FTF− I)

= FFTF− F.

We’re going to see with this energy, we need to introduce the concept of invariants to get
at its flattened Hessian. This concept will become all-consumingly important in §5, so
let’s initially dip our toe into the topic by seeing how it crops up in StVK.

Once again, let’s derive a matrix entry of the 4th-order tensor:

∂P

∂fij
=

(
∂F

∂fij
FTF + F

∂F

∂fij

T

F + FFT
∂F

∂fij

)
− ∂F

∂fij
(4.26)

On the right, the ∂F
∂fij

is our friend the Dirichlet term, whose flattened Hessian will at
least contain an easy µ

2 I9×9. The rest of the terms cause more trouble.

Tomake further progress, we’re going to need theCauchy-Green invariants4. The invariants
are a set of three scalars that often arise when dealing with hyperelastic energies. We’ve
actually already seen the first invariant:

IC = ‖F‖2F

We’ve plumbed its depths already by getting all its derivatives:

∂IC
∂F

= 2F
∂2IC
∂F∂fij

= 2
∂F

∂fij
vec

(
∂2IC
∂F2

)
= 2I9×9.

It’s just the Dirichlet energy! The new trouble we’re seeing arises from the second
Cauchy-Green invariant:

IIC = ‖FTF‖2F
4Technically the right Cauchy-Green invariants, but we’ll drop the “right” here, because it’s not relevant.
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The derivatives we’re currently slashing through are:

∂IIC
∂F

= 4FFTF
∂2IIC
∂F∂fij

= 4

(
∂F

∂fij
FTF + F

∂F

∂fij

T

F + FFT
∂F

∂fij

)
.

Hey, that’s the same hairy term from the Hessian of StVK (Eqn. 4.26)! Up to a constant
factor. In total, the StVK stretching energy is really just a combination of the first and
second invariants. If we can determine the flattened Hessian for the second invariant,
thenwe have all the pieces we need to obtain the flattenedHessian for the StVK stretching
term. It’s not pretty, but here it is:

HII = 4
(
I3×3 ⊗ FFT + FTF⊗ I3×3 + D

)
.

The ⊗ denotes a Kronecker product, and theD term works out to:5

D =

f0fT0 f1f
T
0 f2f

T
0

f0f
T
1 f1f

T
1 f2f

T
1

f0f
T
2 f1f

T
2 f2f

T
2

 . (4.27)

If you haven’t seen a Kronecker product before, or haven’t used them in a long time, they
are reviewed in Appendix C.5. Like I said, it’s not pretty. But, at least we’ve baked all the
ugliness intoHII , so we can go straight from this version of the StVK Hessian,

∂P

∂fij
=

(
∂F

∂fij
FTF + F

∂F

∂fij

T

F + FFT
∂F

∂fij

)
− ∂F

∂fij
, (4.28)

down to this short thing:

vec

(
∂P

∂F

)
=

1

4
HII − I9×9. (4.29)

At least we got something, and as with Neo-Hookean, it will turn out that the pieces we’ve
just obtained can be used over and over elsewhere. Things could be worse.

4.2.4 As-Rigid-As-Possible: Things Go Terribly Wrong

With the As-Rigid-As-Possible (ARAP) energy, things finally go terribly wrong. It’s a
little surprising that such a friendly-looking energy would cause such trouble:

ΨARAP =
µ

2
‖F−R‖2F

P = µ(F−R).

If you recall from §3.6.3, ARAP was voted “Most Spring-Mass-Like” because, just like
with spring-mass forces, its PK1 simply took the expression inside the norm and placed
it outside of the norm.

5This may look like an outer product of vecF, but don’t be fooled. It’s slightly different. Is there another
clean explanation? Not that I’ve found, so if you find one, send me an email.
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We can write down a matrix entry in its 4th-order tensor thusly:

∂P

∂fij
= µ

(
∂F

∂fij
− ∂R

∂fij

)
.

The full 4th-order tensor doesn’t look much different:

∂P

∂F
= µ

(
∂F

∂F
− ∂R

∂F

)
.

The first term is easy: ∂F∂F is our Dirichlet buddy yet again. The second term is the
trouble-maker. What the heck is ∂R∂F ? TheR comes from the polar decomposition F = RS,
so it arrives as a result of a numerical factorization of F. How are we supposed to take
the derivative of a numerical factorization? There are no explicit entries of F that appear
in R, so running back to your old calculus textbook will not help.

We could try applying auto-differentiation to the numerical algorithm used for the polar
decomposition. I did this once (Gao et al. (2009)), and it is by far the ugliest and most
complicated code that I have ever written. It was also brittle and slow. Don’t try it.

This term is so odd-looking that early works either missed or glossed over it (Müller et al.
(2002); Irving et al. (2004)). Later work (Chao et al. (2010); McAdams et al. (2011); Barbic
(2012)) noticed its existence, and devised a variety of techniques, of varying complexity,
for dealing with it. One thing is for sure: if we want to get an expression for the ARAP
energy’s Hessian, we’re going to need something more. We need a way to compute ∂R

∂F ,
the rotation gradient.

This will turn out to be a can of worms that opens a trapdoor under our feet, throws
us down a dusty chute, through roots and vines, and dumps us out on an entirely new
forest path. It’ll need its own chapter.

46



5. A Better Way For Isotropic Solids

Chapter 5

A Better Way For Isotropic Solids

This chapter is a loose retelling of §4.1 and §4.2 from Smith et al. (2019). If you want to
just cut to the chase, the final algorithm is given in §5.5. Everything preceding it will
explain where the pieces of this algorithm are coming from, and why they are necessary.

5.1 The Situation So Far
In the previous chapter, we looked at a whole bunch of different deformation energies:

ΨDirichlet = ‖F‖2F

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2
ΨStVK, stretch = ‖E‖2F

ΨARAP =
µ

2
‖F−R‖2F

After jumping through lots of tensor hoops and doing a bunch of tedious manipulations,
getting the force gradients for these energies turned out to be possible.1 Except for ARAP.
What’s going on? Why does this friendly-looking energy cause so much trouble?

What we’re going to see is that the first three energies, ΨDirichlet, ΨBW08 and ΨStVK, stretch
are all Cauchy-Green energies. I mentioned the Cauchy-Green thing in §4.2.3 when we
were looking at ΨStVK, stretch, but now it will take center stage. Just to offer a spoiler, it
will turn out that ARAP is not part of the Cauchy-Green Club, and its non-membership
is the source of all the trouble. What does this even mean?

This chapter is longer than the previous ones, so again, if you want to cut to the chase,
the final result is in §5.5. Otherwise, let’s get started on our journey.

1Just so we don’t lose sight of our goal, we need these gradients if we want to use a Baraff and Witkin
(1998)-style simulator.
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5.2 The Cauchy-Green Invariants (a.k.a The Wrong Way)

5.2.1 The Gradients and Hessians of the Invariants

There are lots of ways to boil the matrix F down to a scalar, and depending on the
method you choose, it can reveal different aspects of what’s going on inside F. The
Cauchy-Green invariants are one method, and while we will later see that they’re not the
one true method, we should first see what they’re good at and what they’re bad at. Then
we’ll see if we can fix the bad while keeping the good.

Here are the three Cauchy-Green invariants:

IC = ‖F‖2F (5.1)
IIC = ‖FTF‖2F (5.2)

IIIC = det
(
FTF

)
. (5.3)

There are lots of identities you can apply to these, so these invariants can show up in
different places in lots of sneaky disguises. For example, the first invariant has been
known to use the following aliases:

IC = tr
(
FTF

)
= tr(C) = ‖F‖2F = F : F =

∑
i

∑
j

F2
ij . (5.4)

Meanwhile, the third invariant can show up in these forms:

IIIC = det
(
FTF

)
= det(C) = det(F)2 = J2. (5.5)

Above, C = FTF, and that’s where the C subscript for the invariants comes from.2

Why are these invariants useful? Why are we even talking about them? We got a small
hint of this in the previous chapter, when figuring out the force gradient of ΨStVK, stretch
got a lot easier once we introduced IIC. Also, I mentioned in §4.2.2.3 that there is a
limited rogue’s gallery of g∗ andH∗ terms that can ever appear.

The invariants bring these two advantages together. If we can get the gradients and
Hessians of all three invariants, then deriving the an energy’s force gradient becomes
much easier. This is because the gradients and Hessians of the invariants are the complete
rogue’s gallery. Once we have these, everything becomes a mix-and-match exercise
involving the same pieces over and over.3

2If you’ve taken a theory-slanted linear algebra class, or maybe a visualization class, you may recognize
these as the tensor invariants that arise from the characteristic polynomial of C. If you don’t know what
those words mean, that’s okay too.

3Exceptwhenwe try it on theARAPenergy! But, let’s first see howhighwe canflywith thisCauchy-Green
thing before ARAP causes us to face-plant.
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We saw the gradient and Hessian of IC before in §4.2.3:

∂IC
∂F

= 2F
∂2IC
∂F2

= 2
∂F

∂F
.

We flatten these to get the gradient and Hessian versions:

gI = vec

(
∂IC
∂F

)
= 2 vec(F)

HI = vec

(
∂2IC
∂F2

)
= 2I9×9.

We can do the same thing for IIC,

gII = 4 vec (FE)

HII = 4
(
I3×3 ⊗ FFT + FTF⊗ I3×3 + D

)
,

where Dwas defined in Eqn. 4.27. Finally, here are the gradient and Hessian of IIIC,

gIII = 2 det J · gJ
HIII = 2gJg

T
J + 2 det J ·HJ

where we saw gJ andHJ back in Eqns. 5.6 and 5.7:

gJ = vec

(
∂J

∂F

)
= vec


 f1 × f2 f2 × f0 f0 × f1


 (5.6)

HJ =

 0 −f̂2 f̂1
f̂2 0 −f̂0
−f̂1 f̂0 0

 . (5.7)

5.2.2 Getting Any Hessian, the Cauchy-Green Way

With these in hand, we can now use the chain rule4 to obtain a generic expression for the
Hessian of some arbitrary energy, Ψ:

vec

(
∂2Ψ

∂F2

)
=
∂2Ψ

∂I2
C

gIg
T
I +

∂Ψ

∂IC
HI+

∂2Ψ

∂II2
C

gIIg
T
II +

∂Ψ

∂IIC
HII+

∂2Ψ

∂III2
C

gIIIg
T
III +

∂Ψ

∂IIIC
HIII .

4Technically Faá di Bruno’s formula, since it’s a higher order derivative.
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A compact, but slightly more obtuse, way of writing this is:

vec

(
∂2Ψ

∂F2

)
=

∑
x∈{IC,IIC,IIIC}

∂2Ψ

∂x2
gxg

T
x +

∂Ψ

∂x
Hx. (5.8)

We just got done listing all the g∗ and H∗ terms in §5.2.1, so there’s no work left to do
there. Like I said, it’s the complete rogue’s gallery. Instead, the only new work to be done
is deriving all the ∂Ψ

∂x and ∂2Ψ
∂x2 terms, such as ∂Ψ

∂IC
and ∂2Ψ

∂I2
C
.

Those are all scalar derivatives! You can grind through those with just a high-school
level grasp of calculus.5 If you’re feeling really slovenly, you can even just pawn it off on
Mathematica or Wolfram Alpha.

There are now three steps to deriving the Hessian of an energy:

1. Re-write your energy Ψ in terms of IC, IIC, and IIIC.

2. Derive the scalar derivatives, ∂Ψ
∂IC

, ∂2Ψ
∂I2

C
, ∂Ψ
∂IIC

, ∂2Ψ
∂II2

C
, ∂Ψ
∂IIIC

and ∂2Ψ
∂III2

C
. Yes, there are

six of them, but c’mon, it’s like six homework problems! And it’s not cheating to
use the computer!

3. Plug the results into Eqn. 5.8. You’re all done.

5.2.3 St. Venant Kirchhoff Stretching, the Cauchy-Green Way

Let’s try it out on the stretching term from St. Venant Kirchhoff:

ΨStVK, stretch = ‖E‖2F . (5.9)

Step 1: Rewrite using invariants. Expanding out the E = 1
2

(
FTF− I

)
and re-writing

in terms of invariants, we get

ΨStVK, stretch = ‖E‖2F (5.10)

=
1

4
‖FTF− I‖2F (Substitute E)

=
1

4

(
‖FTF‖2F − 2 tr

(
FTF

)
+ ‖I‖2F

)
(Apply B.16)

=
1

4
IIC −

1

2
IC + 3 (Substitute invariants)

We also used ‖I‖2F = 3 on the last line, which holds in 3D. In 2D, ‖I‖2F = 2, but this
usually isn’t that important, because it works out to a constant either way, and the
constant gets burned off when we take the derivative.

5If you don’t have a high-school level grasp of calculus, but have gotten this far, then some Srinivasa
Ramanujan-type situation is going on, and probably don’t need to read any of this.
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Step 2: Take the invariant derivatives. Here they are:

∂ΨStVK, stretch
∂IC

= −1

2

∂2ΨStVK, stretch
∂I2

C

= 0 (5.11)

∂ΨStVK, stretch
∂IIC

=
1

4

∂2ΨStVK, stretch
∂II2

C

= 0 (5.12)

∂ΨStVK, stretch
∂IIIC

= 0
∂2ΨStVK, stretch

∂III2
C

= 0 (5.13)

Wait aminute ... most of these just work out to zero. Did the professormake the homework
problem super-easy by accident?! No, the derivatives are usually pretty easy. Like I
said, this part turns into a calculus homework problem; one of the easy ones near the
beginning, not a hard one from the end.

Step 3: Plug into Eqn. 5.8. Now let’s plug into that sum from before:

vec

(
∂2ΨStVK, stretch

∂F2

)
= 0 · gIgTI −

1

2
HI + 0 · gIIgTII +

1

4
·HII + 0 · gIIIgTIII + 0 ·HIII

=
1

4
HII −

1

2
HI

=
1

4
HII − I9×9 (Plug in the definition of HI )

It’s exactly the same as Eqn. 4.29, but much easier to derive! The system works.

5.2.4 Neo-Hookean, the Cauchy-Green Way

Next let’s try it out on Bonet and Wood (2008)-style Neo-Hookean:

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2
Step 1: Rewrite using invariants. We can write this as:

ΨBW08 =
µ

2
(IC − 3)− µ log(

√
IIIC) +

λ

2

(
log(

√
IIIC)

)2

At this point, I’m going to let you in on a secret: using
√
IIIC is a bad idea. Remember

that IIIC = (detF)2, and J = detF. When we compute
√
IIIC, all we’re doing is taking

the sign of J and throwing it away.

The sign of J is really useful! If it’s negative, it means that our element has been non-
physically poked inside out, a.k.a. inverted. If we’re in this situation, we want to know
about it so we can deal with it. We’ll talk about this more later on in §6.1.2. For the time
being, let’s keep the Js in the energy intact:

ΨBW08 =
µ

2
(IC − 3)− µ log(J) +

λ

2

(
log(J)

)2
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Step 2: Take the invariant derivatives. Let’s take the derivatives, but instead of ∂Ψ
∂IIIC

and ∂2Ψ
∂III2

C
, we’ll use ∂Ψ

∂J and ∂2Ψ
∂J2

6:

∂ΨBW08
∂IC

=
µ

2

∂2ΨBW08
∂I2

C

= 0 (5.14)

∂ΨBW08
∂IIC

= 0
∂2ΨBW08
∂II2

C

= 0 (5.15)

∂ΨBW08
∂J

=
λ log J − µ

J

∂2ΨBW08
∂J2

=
λ(1− log J) + µ

J2
. (5.16)

The scalar derivatives are a little more involved than last time, but again, you can just
punch it into Mathematica or Wolfram Alpha and have it do all the heavy lifting for you.
It’s not cheating. It’s what I just did.

Step 3: Plug into the chain rule. For the final expression, we’re going to again replace
all the IIIC terms with J terms, as follows:

vec

(
∂2Ψ

∂F2

)
=
∂2Ψ

∂I2
C

gIg
T
I +

∂Ψ

∂IC
HI+

∂2Ψ

∂II2
C

gIIg
T
II +

∂Ψ

∂IIC
HII+

∂2Ψ

∂J2
gJg

T
J +

∂Ψ

∂J
HJ .

Fortunately, we have expressions for gJ andHJ in Eqns. 5.6 and 5.77, so we get:

vec

(
∂2ΨBW08
∂F2

)
=
µ

2
HI +

λ(1− log J) + µ

J2
gJg

T
J +

λ log J − µ
J

HJ . (5.17)

= µI9×9 +
λ(1− log J) + µ

J2
gJg

T
J +

λ log J − µ
J

HJ .

(Plug in the definition of HI )

Again, it matches Eqn. 4.25 exactly! But, it was much easier to derive.

5.2.5 As-Rigid-As-Possible: Things Go Terribly Wrong (Again)

It sure seems like we now have an easy and generic way of deriving any Hessian. Let’s
try it out on ARAP:

ΨARAP =
µ

2
‖F−R‖2F (5.18)

6This is still kosher. You can verify it via the chain rule if it bothers you.
7Really, the IIIC versions just built on top of them. The J versions are clearly the more atomic and

fundamental expressions, which we’ll see in more detail in §5.3.3.2.
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Step 1: Rewrite using invariants. Things will go off the rails quickly:

ΨARAP =
µ

2
‖F−R‖2F (5.19)

= ‖F‖2F − 2 tr
(
FTR

)
+ ‖R‖2F (Apply B.16)

= IC − 2 tr
(
FTR

)
+ 3. (Substitute Invariants)

What the heck is tr
(
FTR

)
? It doesn’t correspond to any of the Cauchy-Green invariants!

Like we saw in 4.2.4, the R term comes from the polar decomposition F = RS, so it
arises from the numerical factorization of F.

But that messes everything up! The R makes it so that we can’t fold all appearances of F
into Cauchy-Green invariants, and that breaks our entire Hessian derivation strategy.
Nice going, ARAP.

What went wrong? The ARAP energy has now ruined things twice. In §4.2.4, we tried to
do things the hard way and slash our way through a thicket of tensors and derivatives,
but came up against an impenetrable rotation gradient term, ∂R∂F . At that point, we
were stuck. How do you take the symbolic derivative of something (R) that is purely
numerical?

Then, we tried the Cauchy-Green invariant approach, but immediately ran into a
tr
(
FTR

)
term that doesn’t fit into our invariants, and again we got stuck. Why do things

keep going wrong?

5.3 A Better Set of Invariants?

Our most recent problem, the tr
(
FTR

)
term, provides a good clue. To see why, let’s

look again at all the forms that the IC invariant can take:

IC = tr
(
FTF

)
= tr(C) = ‖F‖2F = F : F =

∑
i

∑
j

F2
ij .

I’ve highlighted the most relevant one in red. This sure looks similar to that tr
(
FTR

)
term that was giving us trouble, doesn’t it? Keeping in mind again thatR arose from the
polar decomposition F = RS, we can go ahead and write this as,

tr
(
FTR

)
= tr

(
ST
)

= tr (S) , (5.20)

where we can drop the transpose at the end because S is a symmetric matrix.

Can we just add this to our gallery of invariants? Is that even a sensible question to ask? I
haven’t actually mentioned yet why these are called invariants. Invariants with respect to
what? Understanding these quantities intuitively is about to become important, so let’s
look at two different ways to think about them.
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5.3.1 Invariants as Rotation Removers

The Cauchy-Green invariants are invariant to rotation, that irritating quantity from way
back in §2.3.4 that we poured lots of effort into removing from F. Only then could we
get a clear picture of how much stretching and squashing was going on. No matter how
you rotate some deformed triangle or tetrahedron in space, if you compute IC, IIC, or
IIIC, they should return the exact same number. In §2.3.4, we looked at two different
approaches to removing the rotation.

5.3.1.1 The St. Venant-Kirchhoff Way

The first was in §2.3.4.3, where we used the StVK-style way,

ΨStVK, stretch =
1

2
‖FTF− I‖2F .

which uses FTF to remove rotation. If we write this in terms of the polar decomposition,
we can explicitly see the moment the rotation gets burned off:

FTF = (RS)TRS = STRTRS

= STS (SinceRTR = I)
= S2 (Since S is symmetric)

So really, we could add yet another alias to the list of disguises that IC can take on,

IC = tr
(
FTF

)
= tr(S2),

and we could rewrite the StVK energy as:

ΨStVK, stretch =
1

2
‖S2 − I‖2F .

5.3.1.2 The As-Rigid-As-Possible Way

We also looked at a second style of rotation removal in §2.3.4.4, the ARAP-style way:

ΨARAP = ‖F−R‖2F .

We can use the fact that the Frobenius norm does not change under rotation to burn off
R in this case as well:

ΨARAP = ‖F−R‖2F
= ‖RT (F−R) ‖2F (Using rotation invariance of ‖ · ‖F )
= ‖RT (RS−R) ‖2F (Inserting F = RS)
= ‖S− I‖2F (Using RTR = I)

Looks pretty close to the StVK energy in this form, doesn’t it? One squares S while the
other one doesn’t?
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5.3.1.3 Comparing the Two Ways

We can do one last manipulation to get a better understanding of what is going on. The
ultimate measure of how much stretching and squashing is really going on in F can be
obtained using its SVD, which is F = UΣVT . The diagonal matrix of singular values, Σ,
shows exactly how much stretching is going on along each of the 3D directions. Can we
write each energy in terms of that?

Using the rotation invariance of ‖ · ‖2F again, and the definition S = VTΣV, we get:

ΨStVK, stretch =
1

2
‖S2 − I‖2F

=
1

2
‖V
(
S2 − I

)
VT ‖2F (Using rotation invariance of ‖ · ‖F )

=
1

2
‖V
(
VTΣVVTΣV − I

)
VT ‖2F (Using S = VTΣV)

=
1

2
‖ΣΣ− I‖2F (Using VTV = VVT = I, a lot)

=
1

2
‖Σ2 − I‖2F (Since Σ is a diagonal matrix)

ΨARAP = ‖S− I‖2F
= ‖V (S− I)VT ‖2F
= ‖V

(
VTΣV − I

)
VT ‖2F

= ‖Σ− I‖2F
In summary, we now have:

ΨStVK, stretch =
1

2
‖Σ2 − I‖2F ΨARAP = ‖Σ− I‖2F

Ignoring the 1/2 in front of ΨStVK, stretch
8, the only real difference is that StVK squares all

the singular values, while ARAP doesn’t. What does that mean?

We can use the same S = VTΣV identity to obtain a new alias for IC:

IC = tr
(
FTF

)
= tr(S2) = tr(Σ2).

Curiously, that irritating tr
(
FTR

)
term from ARAP works out to something similar:

tr
(
RTF

)
= tr(S) = tr(Σ).

When you boil things down to just the singular values Σ, it sure looks like tr
(
RTF

)
measures something similar to IC. That squaring of Σ though, how important is it?
Again, what does it even mean? To answer that, we’ll need to look at the invariants from
a different perspective.

8We’re looking at the qualitative behavior of these energies as F changes, so a constant in front doesn’t
matter.
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sx
sz

sy

Figure 5.1.: The matrix F describes the rotation and scaling of an infinitesimal cube of
material. The singular values of F, the σ{x,y,z} labels above, describe the
lengths of each side of that cube.

5.3.2 Invariants as Geometric Measurements

In the last section, I said that to see what’s really going on in F, you should look at its
singular values, i.e. the Σ in F = UΣVT . We can interpret the invariants in terms of
these singular values.

Looking at the tr(Σ2) version of IC, this works out to:

IC = σ2
x + σ2

y + σ2
z . (5.21)

The σ{x,y,z} terms have a straightforward geometric interpretation. The F matrix charac-
terizes rotation and scaling at a quadrature point, i.e. some infinitesimal volumetric piece
of the solid. As described previously, the singular values are amount of stretching and
squashing along each axis, as shown in Fig. 5.1.

sx

sy

sz

Figure 5.2.: IC sums up the squared lengths of each side of the cube: IC = σ2
x + σ2

y + σ2
z .

I.e. it measures the overall edge lengths of the entire cube.

The IC invariant is the sum of the squared lengths of each side of the cube (Fig. 5.2). We
can work out similar terms for IIC and IIIC, and show that they have straightforward
geometric meanings with respect to this cube.
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The IIC invariant can be rewritten thusly:

IIC = ‖FTF‖2F

= tr

((
FTF

)T
FTF

)
= tr

(
S2S2

)
(Using FTF = S2, from §5.3.1.1)

= tr (SSSS) (Expanding the S2)

= tr
(
VTΣVVTΣVVTΣVVTΣV

)
(Using S = VTΣV)

= tr
(
VTΣΣΣΣV

)
(Using VVT = I)

= tr
(
VTΣ4V

)
(Consolidating the Σs)

= tr
(
VVTΣ4

)
(Using the cyclic permutation property)

= tr
(

Σ4
)

(Using VVT = I)

= σ4
x + σ4

y + σ4
z

The cyclic permutation property of traces is: tr(ABC) = tr(BCA) = tr(CAB).

Thus, the IIC invariant is the sum of the lengths of each side of the cube, raised to the fourth
power. This seems ... not that different from IC. In fact, it seems to encapsulate the same
basic information. IIC only becomes useful when it is folded into an alternate second
invariant:

II∗C =
1

2
(I2

C − IIC). (5.22)

Chugging through, we get:

II∗C =
1

2

(
I2
C − IIC

)
=

1

2

(
(σ2
x + σ2

y + σ2
z)

2 − IIC
)

(Definition of IC)

=
1

2

(
σ4
x + σ4

y + σ4
z + 2

(
σxσy

)2
+ 2 (σxσz)

2 + 2
(
σyσz

)2 − IIC)
(Expanding the square)

=
1

2

(
σ4
x + σ4

y + σ4
z + 2

(
σxσy

)2
+ 2 (σxσz)

2 + 2
(
σyσz

)2 − (σ4
x + σ4

y + σ4
z

))
(Definition of IIC)

=
1

2

(
2
(
σxσy

)2
+ 2 (σxσz)

2 + 2
(
σyσz

)2) (Fourth order terms cancel)

=
(
σxσy

)2
+ (σxσz)

2 +
(
σyσz

)2
This expression is more interesting. Whereas IC was the summed squared lengths of the
cube, II∗C is the sum of the squared areas of the cube faces (Fig.5.3).
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sx

sy

sx
sz sz

sy

Figure 5.3.: II∗C sums up the squared areas of each side of the cube: II∗C =
(
σxσy

)2
+

(σxσz)
2 +

(
σyσz

)2. I.e. it measures the overall face areas of the entire cube.

Finally, let’s look at IIIC. The determinant of a matrix is the product of its singular
values, so this one is relatively easy:

IIIC = det(FTF) (5.23)

= det
(
VΣUTUΣVT

)
(Using F = UΣVT )

= det
(
VΣΣVT

)
(UsingUTU = I)

= (σxσyσz)
2. (V is a rotation, so the singular values are Σ2)

Thus, IIIC measures the square of the cube’s volume (Fig. 5.4).

sx
sz

sy

Figure 5.4.: III∗C is the squared volume of the cube: II∗C = (σxσyσz)
2.

Taken together, the three invariants measure some intuitive and relevant geometric
quantities:

IC = σ2
x + σ2

y + σ2
z → squared edge lengths

II∗C =
(
σxσy

)2
+ (σxσz)

2 +
(
σyσz

)2 → squared face areas
IIIC = (σxσyσz)

2 → squared volume.
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This looks like a fairly complete way to describe how some small cube of material can
deform, so it makes sense that people have been using the Cauchy-Green invariants to
describe deformation for the last 80 years (since Mooney (1940), at least).

So then what is the problem with ARAP? These three invariants look like a completely
reasonable way to describe deformations, so why can’t the ARAP energy be written
down in terms of them?

5.3.3 A New Set of Invariants

5.3.3.1 A New First Invariant

Back in §5.3.1.3, we saw this alias for IC,

IC = tr(Σ2),

and this one for the irritatingly non-cooperative term in ARAP:

tr
(
RTF

)
= tr(S) = tr(Σ).

Then in §5.3.2 we got a singular value version of IC,

IC = σ2
x + σ2

y + σ2
z ,

while the non-cooperative term trivially takes this form:

tr(S) = σx + σy + σz.

The non-cooperative term is an unsquared version of IC. Here, it finally becomes clear
why ARAP can’t be written in terms of the Cauchy-Green invariants. You can’t use a sum
of squared values to express a sum of unsquared values.

This strongly suggests that tr(S) should be its own invariant, because it describes
something in F that can’t be described with the Cauchy-Green invariants. Let’s call it:

I1 = tr(S). (5.24)

5.3.3.2 A New Second and Third Invariant

We have essentially just performed the following substitution:

IC = tr
(
FTF

)
FTF→ S I1 = tr (S) (5.25)

Let’s go ahead and perform the same operation on the second and third invariants to
round out the whole set:

IIC = tr
(
FTFFTF

)
FTF→ S I2 = tr

(
S2
)

(5.26)

IIIC = det
(
FTF

)
FTF→ S I3 = det (S) (5.27)
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Is this a good set of invariants? One way to decide this is to see if we can express the
original Cauchy-Green invariants using them. If we can, then we will know for sure that
new invariants can describe a super-set of the phenomena that the Cauchy-Green ones
could. That would be an excellent indicator that this new set is legitimate.

Well, IC is equivalent to I2. We saw that IC = tr
(
S2
)
back in §5.3.1.3, so that one is

easy. Next up, IIIC = I2
3 . We had already gotten hints about something like this back

in §5.2.4, when J = detF sure looked a lot more fundamental than IIIC = det
(
FTF

)
.

This suspicion is now confirmed, since I3 = detS = detF = J . This determinant of F
already captures all the essential information, so it should have an invariant all to itself.

This leaves IIC. Showing the equivalence to our new invariants is straightforward in 2D:

IIC = I2
2 − 2I2

3

= (σ2
x + σ2

y)
2 − 2(σxσy)

2

= σ4
x + σ4

y + 2(σxσy)
2 − 2(σxσy)

2

= σ4
x + σ4

y .

The 3D version takes more work, but is possible:

IIC =
1

2

(
I2

2 − I4
1

)
+ I2

1I2 + 4I1I3.

If you already believe me that this expression is legitimate, feel free to skip forward to
§5.3.4. Otherwise, here’s the proof in all its grisly glory. First some auxiliary variables:

α = (σxσy)
2 + (σxσz)

2 + (σyσz)
2

β = σ2
xσyσz + σxσ

2
yσz + σxσyσ

2
z

γ = σ3
x(σy + σz) + σ3

y(σx + σz) + σ3
z(σx + σy)

I2
2 = IIC + 2α

I4
1 = IIC + 6α+ 12β + 4γ

I2
1I2 = IIC + 2α+ 2β + 2γ

I1I3 = β

Now let’s plug them into our expression:

IIC =
1

2

(
I2

2 − I4
1

)
+ I2

1I2 + 4I1I3

IIC =
1

2
(IIC + 2α− IIC − 6α− 12β − 4γ) + I2

1I2 + 4I1I3 (Expand I2
2 and I4

1 )

IIC = −4 (α+ 3β + γ) + I2
1I2 + 4I1I3 (Simplify the expansion)

IIC = −4 (α+ 3β + γ) + IIC + 2α+ 2β + 2γ + 4β (Expand I2
1I2 and I1I3)

IIC = −4 (α+ 3β + γ) + IIC + 4(α+ 3β + γ) (Simplify the expansion)
IIC = IIC

Our new invariants look legitimate. They are a super-set of Cauchy-Green.
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5.3.4 Does ARAPWork Now?

Now let’s revisit §5.2.5 and try to write the ARAP energy in terms of our new invariants:

I1 = trS I2 = tr
(
S2
)

I3 = detS (5.28)

Can we do it?

ΨARAP = ‖F−R‖2F (5.29)

= ‖F‖2F − 2 tr
(
FTR

)
+ ‖R‖2F (Apply B.16)

= I2 − 2I1 + 3 (Since ‖F‖2F = IC = I2 and trFTR = trS = I1)

Hooray! Now let’s see if we can get the PK1, since we will need it to compute a force:

∂ΨARAP
∂F

=
∂

∂F
(I2 − 2I1 + 3) (5.30)

=
∂I2

∂F
− 2

∂I1

∂F
. (5.31)

Do we know these derivatives? Since I2 = IC, we already have that one from §4.2.3:

∂I2

∂F
=
∂IC
∂F

= 2F.

What about ∂I1∂F ? Since I1 is our brand-new invariant, we’re going to need to establish a
new expression. Fortunately, it turns out to be quite simple:

∂I1

∂F
=
∂ trS

∂F
=
∂ tr

(
RFT

)
∂F

= R. (5.32)

It’s just the rotation component of F! Now we can write the full PK1:

∂ΨARAP
∂F

=
∂I2

∂F
− 2

∂I1

∂F
(5.33)

= 2F− 2R (5.34)
= 2(F−R) (5.35)

This matches what we got in §4.2.4, so everything checks out9. Now if we can just get an
expression for the Hessian of ARAP, then we’re finally all done:

∂2ΨARAP
∂F2

= 2
∂

∂F
(F−R) (5.36)

= 2

(
∂F

∂F
− ∂R

∂F

)
. (5.37)

Oh ... right. There was that ∂R∂F rotation gradient term from §4.2.4 that we didn’t know
how to deal with. Does our brand new I1 invariant help us out with ∂R

∂F ? Not in any way
that I can see. ARAP is making trouble again. ARAP, why can’t you just behave?

9I dropped the µ
2
term, just to make things a little cleaner.
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5.4 The Eigenmatrices of the Rotation Gradient
We have a new set of promising invariants, but one key piece is missing. If we can’t figure
out a good way to write down ∂2I1

∂F2 = ∂R
∂F then everything was for naught. Or rather, we

can use some ugly numerical method to obtain ∂R
∂F (like the one in Papadopoulo and

Lourakis (2000)), and our quest to find a clean and slick method for finding Hessians
will come to a messy and vaguely unsatisfying end.

The core issue is that we don’t know how to obtain a tidy symbolic derivative for the
numerical quantityR. However, as we will see, this derivative does indeed have a simple
and clean structure, if you look at it from the right perspective.

To get to that perspective, we need to look along two counter-intuitive directions:

• The eigendecomposition of ∂R∂F will have a simple structure, i.e. we will be able to form
it directlyQ and Λ from ∂R

∂F = QΛQT . This is the opposite of how things usually go.

Usually there’s a simple way to write down some matrixA, and then you compute
the eigendecomposition,A = QΛQT , using somebyzantine numericalmethod. The
entries of Q and Λ then form an impenetrable sea of numbers with no discernible
structure. Only in a few special cases10 do you ever get a simple, closed-form
representation ofQ.

• We won’t be able to see anything if we flatten ∂R
∂F out to a matrix and look at its

eigenvectors. Instead, we have to recognize ∂R
∂F for what it really is: a 4th-order

tensor (§4.1). We need to gaze at its eigenstructure in all its 4th-order glory.

In the 4th-order universe, an eigenvector becomes an eigenmatrix. The eigenmatrix
view will reveal the fundamental structure of the rotation gradient.

Let’s take the first point for granted: the eigendecomposition of the rotation gradient
contains a simple structure that is waiting to be discovered. From there, you’re probably
wondering what the eigendecomposition of a 4th-order tensor looks like, and what the
heck an eigenmatrix is.

5.4.1 What’s an Eigenmatrix?

Let’s recall the basic eigenvalue problem:

Aq0 = λ0q0.

The eigenvalue λ0 and the eigenvector q0 form an eigenpair ofA. The vector q0 is special
because even after you push it through a multiply withA, it remains exactly the same.
Except, it was scaled by λ0.

10Like Fourier series popping out of the heat equation. That’s a pretty important one.
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For some 4th-order tensor

A =



[
a0 a2

a1 a3

] [
a8 a10

a9 a11

]
[
a4 a6

a5 a7

] [
a12 a14

a13 a15

]
 (5.38)

we can define a similar eigenpair, (λ0,Q0). The equivalent eigenvalue problem is,
A : Q0 = λ0Q0,

where instead of the Aq0 matrix-vector multiply, we have a double-contraction. We can
write down everything down in its grisly, fully-expanded verbosity like this:

A : Q0 =



[
a0 a2

a1 a3

] [
a8 a10

a9 a11

]
[
a4 a6

a5 a7

] [
a12 a14

a13 a15

]
 :

[
q0 q2

q1 q3

]

=

[
(a0q0 + a1q1 + a2q2 + a3q3) (a8q0 + a9q1 + a10q2 + a11q3)
(a4q0 + a5q1 + a6q2 + a7q3) (a12q0 + a13q1 + a14q2 + a15q3)

]

= λ0

[
q0 q2

q1 q3

]
= λ0Q0.

Again, Q0 is a special matrix that, even after going through that baroque double-
contraction operation, emerges essentially unscathed. Except, it was scaled by λ0.

Now the thing is, the Aq0 = λ0q0 and A : Q0 = λ0Q0 versions are exactly equivalent.
If you find some eigenmatrix Q0 of the tensor A, then it is also an eigenvector of the
flattened out matrix A = vec A. Again, spelling everything out verbosely:

(vec A)T (vecQ0) = ATq0 =


a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15


T 

q0

q1

q2

q3



=


a0q0 + a1q1 + a2q2 + a3q3

a4q0 + a5q1 + a6q2 + a7q3

a8q0 + a9q1 + a10q2 + a11q3

a12q0 + a13q1 + a14q2 + a15q3



= λ0


q0

q1

q2

q3

 = λ0q0 = λ0 vecQ0.
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This is good news! We don’t have to come up with a whole new suite of numerical
methods to find the eigenmatrices of some tensor A. Instead, we can just flatten things
out to A = vec A, and run whatever eigenvalue routine you want from Matlab, Eigen, or
LAPACK. The (λi,qi) pairs that come back can then just be re-folded back up into the
eigenmatrix-based pair, (λi,Qi).

But if this is the case, why do we even care about eigenmatrices? If they contain the exact
same entries as eigenvectors, just repackaged into matrix form, why not use the more
familiar vector form?

5.4.2 Structures Lurk in the Decomposition of an Eigenmatrix

The reason we care about eigenmatrices is that once you have a matrix, you can apply a
variety of matrix-based tools that are not available for vectors. For example, you could
take the eigendecomposition of an eigenmatrix. It would be weirdly meta-mathematical
and fractal, but you could do it. Equivalently, you could take the QR decomposition or
SVD of an eigenmatrix.

Or, we can apply the results of the SVD from related matrices, and see if those reveals any
new structures. The most important matrix we’ve been dealing with throughout these
chapters, and ever since I highlighted it in bright red back in §2.3.3, is the deformation
gradient, F. Let’s say that we had the SVD of that deformation gradient,

F = UΣVT .

Let’s also say that we went ahead and did the horribly ugly thing by computing the
rotation gradient, ∂R∂F , using the numerical approach of Papadopoulo and Lourakis (2000).
I’ll even give you the actual Matlab code I used to do this in Figs. 5.5 and 5.6.

To keep things simple, let’s look at the 2D version of ∂R
∂F . In that case, if we poke at

the matrices coming out of DRDF_Horrible in Fig. 5.5, we will quickly discover that it’s
a rank-one matrix composed of a single eigenpair, (λ0,Q0). Hoping to discover some
simple structure, we can stare at the entries of Q0, or even q0 = vecQ0. As usual, it will
just be an impenetrable wall of numbers. Not helpful.

We can poke at it more in Matlab and take its SVD, QR, and eigendecomposition to see
if something interesting shows up. Alas, I can tell you from experience that this will
not yield any insight either. Finally, while running a few errands over the weekend, and
chewing this problem over in the backs of ours minds, we get the nagging feeling that
everything we’re dealing with really just boils down to F. Why not pound onQ0 using
the decomposition of F and see what happens?

We can try rotating Q0 into the same space as F using UQ0V
T . Nothing much to see

here, just the usual sea of numbers. How about we rotateQ0 out of the space of F:

UTQ0V =

[
0 −0.70711

0.70711 0

]
? (5.39)
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1 function [final] = DRDF_Horrible(R,S)
2 H = zeros(4,4);
3 for index = 1:4
4 i = mod(index - 1, 2);
5 j = floor((index - 1) / 2);
6

7 % promote it by a dimension
8 i = i + 1;
9 j = j + 1;

10 index3 = i + (j - 1) * 3;
11

12 R3 = eye(3,3);
13 S3 = eye(3,3);
14 R3(1:2, 1:2) = R;
15 S3(1:2, 1:2) = S;
16

17 [DR3, DS3] = DRDF_Column(R3,S3,index3);
18

19 DR = DR3(1:2,1:2);
20 DS = DS3(1:2,1:2);
21 column = DR;
22

23 H(:,index) = reshape(column, 4, 1);
24 end
25 final = H;
26 endfunction

Figure 5.5.: Matlab code to compute the rotation gradient using a horrible numerical
method.We only use this temporarily on ourway to finding a clean expression
for ∂R∂F .
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1 function [DR, DS] = DRDF_Column(R,S,index)
2 i = mod(index - 1, 3);
3 j = floor((index - 1) / 3);
4

5 % Matlab indexing
6 i = i + 1;
7 j = j + 1;
8

9 eiej = zeros(3,3);
10 eiej(i,j) = 1;
11

12 G = (eye(3,3) * trace(S) - S) * R’;
13 Rij = R’ * eiej;
14

15 % extract the skew vector
16 Rijsym = (Rij - Rij’) * 0.5;
17 skew = zeros(3,1);
18

19 skew(1) = -Rijsym(2,3);
20 skew(2) = Rijsym(1,3);
21 skew(3) = -Rijsym(1,2);
22 skew = 2 * skew;
23

24 omega = (G^-1) * skew;
25

26 cross = [ 0 -omega(3) omega(2);
27 omega(3) 0 -omega(1);
28 -omega(2) omega(1) 0];
29 DR = cross * R;
30 DS = R’ * (eiej - DR * S);
31 end

Figure 5.6.: Matlab code to compute one column of the 3D rotation gradient. Like in
Fig. 5.5, we only use this as a waypoint on our journey to find a clean
expression for ∂R

∂F . in DRDF_Horrible, I pinned one dimension of this 3D
version so that I could mess around with it in 2D.
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Hang on a minute. A bunch of zeros appeared, which is usually a good sign. Also, that
0.70711 sure looks familiar from trigonometry. Wasn’t it

√
2/2 = 1/

√
2, or something like

that? If we pull that constant out, we see that the structure ofQ0 is actually:

Q0 =
1√
2
U

[
0 −1
1 0

]
VT . (5.40)

That’s ... pretty simple! It’s similar to F, but instead of the singular value matrix Σ in the

middle, it’s just the constant matrix
[

0 −1
1 0

]
. This matrix corresponds to an infinitesimal

rotation in the 2D plane, so we call the whole thing a twist matrix. The 1/
√

2 makes
sense too. Eigenvectors have unit magnitude, and since U and V are already unitary
matrices, the only things left to normalize are the 1 and −1 in the center matrix. Since√

12 + (−1)2 =
√

2, the normalization factor is 1/
√

2.

If this entire process sounds improbably informal, andworryingly outside the hypothesis-
experiment-conclusion loop of scientific discovery you were taught in high school, just
know that real-world research doesn’t always conform to that model. I know I’m not the
only researcher who stumbles across new things by just messing around in Matlab.

5.4.3 What About the Eigenvalue?

Let’s lookagain at ourhorriblyugly, numerically-based rotationgradient code,DRDF_Horrible.
Just to see how the λ0 eigenvalue evolves, we can start plugging easy-looking integers
into the singular values, like σx = 2 and σy = 3, σx = 2 and σy = 5, and so on. You can
literally try this out yourself – the code to run these experiments is in Fig. 5.7.

From there, we can see λ0 take on values that look suspiciously like some tidy fractions.
For example, (σ0,σ1) = (2, 3) yielded 0.4, and (σ0,σ1) = (2, 5) yields 0.28571. Just to
confirm our suspicion that these are fractions, we can push them through Matlab’s rats
function, and see that rats(0.4)→ 2/5 and rats(0.28571)→ 2/7 (last line, Fig. 5.7).

Running a variety of experiments with differentU, Σ andV, it will quickly become clear
that the eigenvalue takes the general form:

λ0 =
2

σx + σy
. (5.41)

If the informality and empiricism of this process bothers you, think of it like running
experiments to build up some numerical intuition. Once you see a pattern, you can posit
a testable theory.

5.4.4 Building the Rotation Gradient (Finally)

We now have the single eigenpair that composes the 2D rotation gradient:

λ0 =
2

σx + σy
Q0 =

1√
2
U

[
0 −1
1 0

]
VT . (5.42)
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1 % Pick your sigmas
2 Sigma = [2 0,
3 0 5];
4

5 % Pick some rotations
6 angleU = 0;
7 U = [cos(angleU) -sin(angleU);
8 sin(angleU) cos(angleU)];
9

10 angleV = 0;
11 V = [cos(angleV) -sin(angleV);
12 sin(angleV) cos(angleV)];
13

14 % compose your F
15 F = U * Sigma * V’;
16

17 % compose your polar decomposition
18 R = U * V’;
19 S = V * Sigma * V’;
20

21 % get the rotation gradient
22 H = DRDF_Horrible(R,S)
23

24 % what’s the eigendecomposition look like?
25 [Q Lambda] = eig(H)
26

27 % is the eigenvalue a rational number?
28 rats(Lambda(4,4))

Figure 5.7.: Matlab code to experiment with the single eigenvalue of the rotation gradient.
Plug different integers into the diagonal of Sigma and see suspiciously
rational-looking quantities pop out at the end.
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1 function [final] = DRDF_Clean_2D(U, Sigma, V)
2 Q0 = (1 / sqrt(2)) * U * [0 -1; 1 0] * V’;
3 q0 = vec(Q0);
4 lambda0 = 2 / (Sigma(1,1) + Sigma(2,2));
5 final = lambda0 * (q0 * q0’);
6 endfunction

Figure 5.8.: Fast and compact Matlab code for building the 2D rotation gradient. This
implements Eqn. 5.43. Looks nicer than Figs. 5.5 and 5.6, don’t you think?

We can then use an outer product to arrive at a very simple way to compute the flattened
rotation gradient:11

vec

(
∂R

∂F

)
=

2

σx + σy
vec (Q0) vec (Q0)T . (5.43)

This also maps onto some very simple Matlab code, given in Fig. 5.8. We can chug
through the entire experimental process again to find a similar expression for the 3D
rotation gradient. I will spare you all the intermediate Matlab muddling, and instead tell
you that the 3D rotation gradient is rank-3, and the three eigenpairs follow a pattern that
is similar to 2D:

λ0 =
2

σx + σy
Q0 =

1√
2
U

0 −1 0
1 0 0
0 0 0

VT (5.44)

λ1 =
2

σy + σz
Q1 =

1√
2
U

0 0 0
0 0 1
0 −1 0

VT (5.45)

λ2 =
2

σx + σz
Q2 =

1√
2
U

 0 0 1
0 0 0
−1 0 0

VT . (5.46)

We can then use the same outer product form as the 2D case to compute the final
vec
(
∂R
∂F

)
matrix,

vec

(
∂R

∂F

)
=

2∑
i=0

λi vec (Qi) vec (Qi)
T , (5.47)

where λi and Qi correspond to Eqns. 5.44 to 5.46. The corresponding Matlab code is
given in Fig. 5.9.

11Oh hey look it’s that counter-intuitive eigendecomposition I warned you would happen in the first
bullet point back at the beginning of §5.4.
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1 function [H] = DRDF_Clean_3D(U, Sigma, V)
2 % get the twist modes
3 T0 = [0 -1 0;
4 1 0 0;
5 0 0 0];
6 T0 = (1 / sqrt(2)) * U * T0 * V’;
7

8 T1 = [0 0 0;
9 0 0 1;

10 0 -1 0];
11 T1 = (1 / sqrt(2)) * U * T1 * V’;
12

13 T2 = [ 0 0 1;
14 0 0 0;
15 -1 0 0];
16 T2 = (1 / sqrt(2)) * U * T2 * V’;
17

18 % get the flattened versions
19 t0 = vec(T0);
20 t1 = vec(T1);
21 t2 = vec(T2);
22

23 % get the singular values
24 sx = Sigma(1,1);
25 sy = Sigma(2,2);
26 sz = Sigma(3,3);
27

28 H = (2 / (sx + sy)) * (t0 * t0’);
29 H = H + (2 / (sy + sz)) * (t1 * t1’);
30 H = H + (2 / (sx + sz)) * (t2 * t2’);
31 end

Figure 5.9.: Fast and compact Matlab code for building the 3D rotation gradient. This is
the outer product of the eigenmatrices from Eqns. 5.44 - 5.46.
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5.5 Building a Generic Hessian (Finally)
We now have everything in hand needed to compute the Hessian for an isotropic energy.
Remember what happened back in §5.2.2: we wrote things in terms of the Cauchy-Green
invariants, and it looked like we were on easy street for building the final expression.
Then we tried to approach on ARAP, which didn’t fit into the Cauchy-Green formalism,
and blew it all to smithereens.

Now we do have a set of invariants that encompass ARAP, so let’s use them to get a
similarly generic approach. Starting from our new Smith et al. (2019) invariants,

I1 = tr (S) I2 = tr
(
FTF

)
I3 = detF, (5.48)

we have the gradient (g∗) and Hessian (H∗) of each:

g1 = vec (R) H1 =
2∑
i=0

λi vec (Qi) vec (Qi)
T (Eqn. 5.47)

g2 = vec (2F) H2 = 2I9×9

gJ = vec


 f1 × f2 f2 × f0 f0 × f1


 HJ =

 0 −f̂2 f̂1
f̂2 0 −f̂0
−f̂1 f̂0 0

 .

Now we can write an alternative expression for the energy Hessian:

vec

(
∂2Ψ

∂F2

)
=
∂2Ψ

∂I2
1

g1g
T
1 +

∂Ψ

∂I1
H1 +

∂2Ψ

∂I2
2

g2g
T
2 +

∂Ψ

∂I2
H2 +

∂2Ψ

∂I2
3

g3g
T
3 +

∂Ψ

∂I3
H3 (5.49)

=

3∑
i=1

∂2Ψ

∂I2
i

gig
T
i +

∂Ψ

∂Ii
Hi. (5.50)

Finally, we follow the same three-step process as before, but using the Smith et al. (2019)
invariants:

1. Re-write your energy Ψ using I1, I2 and I3.

2. Derive the scalar derivatives, ∂Ψ
∂I1

, ∂2Ψ
∂I2

1
, ∂Ψ
∂I2

, ∂2Ψ
∂12

2
, ∂Ψ
∂I3

and ∂2Ψ
∂I2

3
.

3. Plug the results into Eqn. 5.50.

Let’s put this algorithm through its paces. First, let’s confirm it does the same thing as
Cauchy-Green by confirming that we still get the same results for Neo-Hookean.

5.5.1 Neo-Hookean, the Smith et al. (2019) Way

Once again, here’s Bonet and Wood (2008)-style Neo-Hookean:

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2
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Step 1: Rewrite using invariants. This takes the form:

ΨBW08 =
µ

2
(I2 − 3)− µ log(I3) +

λ

2

(
log(I3)

)2
We’re now using I3 instead of J , or the even more ridiculous-looking

√
IIIC. So, things

are already looking cleaner.

Step 2: Take the invariant derivatives. These are similar to before, which is good sign:

∂ΨBW08
∂I1

= 0
∂2ΨBW08
∂I2

1

= 0 (5.51)

∂ΨBW08
∂I2

=
µ

2

∂2ΨBW08
∂I2

= 0 (5.52)

∂ΨBW08
∂I3

=
λ log I3 − µ

I3

∂2ΨBW08
∂I2

3

=
λ(1− log I3) + µ

I2
3

. (5.53)

Step 3: Plug into the chain rule. Plugging into Eqn. 5.50, but dropping everything with
a zero coefficient, we get:

vec

(
∂2ΨBW08
∂F2

)
= µI9×9 +

λ(1− log I3) + µ

I2
3

g3g
T
3 +

λ log I3 − µ
I3

H3.

It matches both Eqn. 4.25 and Eqn. 5.17: mission accomplished! The Smith et al. (2019)
Way is looking legit.

5.5.2 ARAP, the Smith et al. (2019) Way

Now let’s look again at our troublemaking friend, ARAP:

ΨARAP = ‖F−R‖2F .

Step 1: Rewrite using invariants. Unlike the last time we tried this in §5.2.5, we now
have the I1 invariant at our disposal. We actually already did this rewrite in §5.3.4, and it
worked out to:

ΨARAP = I2 − 2I1 + 3.

Step 2: Take the invariant derivatives. Here we go:

∂ΨARAP
∂I1

= −2
∂2ΨARAP
∂I2

1

= 0 (5.54)

∂ΨARAP
∂I2

= 1
∂2ΨARAP
∂I2

= 0 (5.55)

∂ΨARAP
∂I3

= 0
∂2ΨARAP
∂I2

3

= 0. (5.56)
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1 function [H] = ARAP_Hessian(F)
2 [U Sigma V] = svd_rv(F);
3

4 % get the twist modes
5 T0 = [0 -1 0; 1 0 0; 0 0 0];
6 T0 = (1 / sqrt(2)) * U * T0 * V’;
7

8 T1 = [0 0 0; 0 0 1; 0 -1 0];
9 T1 = (1 / sqrt(2)) * U * T1 * V’;

10

11 T2 = [0 0 1; 0 0 0; -1 0 0];
12 T2 = (1 / sqrt(2)) * U * T2 * V’;
13

14 % get the flattened versions
15 t0 = vec(T0);
16 t1 = vec(T1);
17 t2 = vec(T2);
18

19 % get the singular values in an order that is consistent
20 % with the numbering in [Smith et al. 2019]
21 s0 = Sigma(1,1);
22 s1 = Sigma(2,2);
23 s2 = Sigma(3,3);
24

25 H = 2 * eye(9,9);
26 H = H - (4 / (s0 + s1)) * (t0 * t0’);
27 H = H - (4 / (s1 + s2)) * (t1 * t1’);
28 H = H - (4 / (s0 + s2)) * (t2 * t2’);
29 end

Figure 5.10.: Matlab code to compute the exact Hessian of the ARAP energy in 3D. The
code for svd_rv is given in Fig. F.1.

This time it was easy. I didn’t even have to go running to Mathematica for this one.

Step 3: Plug into the chain rule. Again but dropping everything with a zero coefficient,
we get:

vec

(
∂2ΨARAP
∂F2

)
= 2I9×9 − 2H1.

FINALLY, A SIMPLE EXPRESSION. I ALWAYS KNEW YOU HAD IT IN YOU, ARAP.
The Matlab code to compute this is shown in Fig. 5.10.

5.5.3 Symmetric Dirichlet, the Smith et al. (2019) Way

Just to build some confidence that this approach is indeed generic and we’re not fooling
ourselves, let’s try it out on an energy we haven’t seen before, the Symmetric Dirichlet
energy from Smith and Schaefer (2015a):

ΨSymmetric = ‖F‖2F + ‖F−1‖2F . (5.57)
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Step 1: Rewrite using invariants. We’re not quite on easy street with this energy. Is it
possible to write ‖F−1‖2 in terms of the invariants? Indeed it is, and just to keep things
moving along, I’m going to pull it in as an identity from Eqn. B.36. Then we get:

ΨSymmetric = I2 +
1

4

(
I2

1 − I2

I3

)
− 2

I1

I3
. (5.58)

Step 2: Take the invariant derivatives. This part is tedious but straightforward. As
always, you can have Mathematica or Matlab do this part for you:

∂ΨSymmetric

∂I1
=

1

I3

(
I1

2
− 2

)
∂2ΨSymmetric

∂I2
1

=
1

2I3
(5.59)

∂ΨSymmetric

∂I2
= 1− 1

4I3

∂2ΨSymmetric

∂I2
= 0 (5.60)

∂ΨSymmetric

∂I3
=

1

(I3)2

(
2I1 −

I2
1 − I2

4

)
∂2ΨSymmetric

∂I2
3

=
1

(I3)3

(
−4I1 +

I2
1 − I2

2

)
.

(5.61)

Once again, I used Mathematica for this, just a minute ago. It’s not cheating.

Step 3: Plug into the chain rule. It’s not quite as clean and pretty as the other energies:

vec

(
∂2ΨSymmetric

∂F2

)
=

1

2I3
g1g

T
1 +

1

I3

(
I1

2
− 2

)
H1 +

(
1− 1

4I3

)
H2+

1

(I3)3

(
−4I1 +

I2
1 − I2

2

)
g3g

T
3 +

1

(I3)2

(
2I1 −

I2
1 − I2

4

)
H3.

But, it worked, once we got past the ‖F−1‖2 hurdle. The system looks legit! You now
have a mechanical method for computing the Hessian of any isotropic energy. You need
to take some high-school-level derivatives, and maybe dig out a new identity during
Step 1. Otherwise, the process is close to automatic.
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Chapter 6

A Friendlier Neo-Hookean Energy

This chapter is loose retelling of §3 from Smith et al. (2018). If you want to cut to the
chase and see the final energy, it’s in §6.3.3. It’s not the final energy listed in Smith et al.
(2018), but it is the one that is used internally at Pixar. More details appear in a footnote9.

6.1 Cauchy-Green vs. Smith et al. (2019)
In the previous chapter, we found that the Cauchy-Green invariants, which have been
used extensively for the last 80 years, were not up to the task of generating energy
Hessians. ARAP’s membership application to the Cauchy-Green Club was roundly
rejected, causing all sorts of problems. Instead, we built a new, more inclusive club for
ARAP: the invariants from Smith et al. (2019). Once ARAP stepped inside this new
clubhouse, the simple and elegant structure that had been living inside it all along was
finally revealed.

This raises a question though: where have these more inclusive invariants been for
the last 80 years? Why did Mooney (1940) choose to use the unnecessarily restrictive
Cauchy-Green invariants? Unfortunately, we can’t ask Melvin Mooney directly because
he passed away over 52 years ago. George Green has been gone for 179 years, and
Augustin-Louis Cauchy for 163, so they can’t help either. Thus, we are left to speculate.
Having mulled this over for a while, I can think of two reasons.

6.1.1 Maybe Mooney Didn’t Know About the Polar Decomposition

The Smith et al. (2019) invariants are based on the polar decomposition, which has
been known in math circles for more than a century. For example, Higham (1986) cites
Autonne (1902). However, it may not have been widely known in Mooney’s immediate
physics and rheology communities in the 1940s.

Just 15 years earlier in 1925, Werner Heisenberg had not known about basic matrix
operations . While investigating quantum mechanics, he unknowingly re-derived basic
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linear algebraic identities, and did not make the connection until Max Born pointed it out
to him (Gribbin (2011), Chapter 6). At the time, Heisenberg was in Göttingen, Germany,
the epicenter of all math and science research, not the jerkwater nowheresville of Passaic,
New Jersey where Mooney was sitting.1

Matrix notation had not even been standardized by 1940, and numerical methods were
still an extremely niche discipline. The hardware to run them did not exist yet, though
this would change a few years later when the Allies built massive machines to break
Nazi codes. Even if these machines had existed, standard methods for computing the
polar decomposition, such as those involving the SVD, would need techniques like
Golub-Kahan bidiagonalization (Golub and Kahan (1965)). These were still 25 years in
the future.

Thus, it would make sense that Mooney (1940) did not have the the polar decomposition
at his fingertips. His paper does not list a single matrix, and is firmly a work of analysis.

6.1.2 Maybe Mooney Didn’t Care About Inversion

Alternatively, it is possible thatMooney did know about the polar decomposition, or some
analytic equivalent, and decided to ignore it. To see why, we should ask which physical
phenomena are captured by Smith et al. (2019) that are missing from Cauchy-Green, and
whether Mooney would have cared about them.

We saw a piece of this in §5.2.4 when I let you in on the secret that nobody actually
uses that weird-looking

√
IIIC term. Instead, everybody uses J . Later on in §5.3.3.2,

we saw J getting the recognition it deserves with a promotion to first-class invariant,
I3 = J = detF.

As previously mentioned, this I3 version preserves the sign of the determinant:

I3 = σxσyσz (6.1)√
IIIC =

√
σ2
xσ

2
yσ

2
z = |σxσyσz|. (6.2)

But then why does the Cauchy-Green version wrap the | · | around the whole thing? Why
is it so eager to throw away the sign?

A negative determinant signals that an element has inverted2. As shown in Fig. 6.1,
this happens if you squash a tetrahedron so hard that it pokes inside out. This sort
of configuration is not possible in nature, but due to the fact that we can numerically
represent phenomena that don’t occur in nature3, it can happen in the simulation.

1Down the road in Murray Hill, NJ, Bell Labs would become the epicenter soon enough.
2As far as I can tell, this use of the term inversion comes from Irving et al. (2004), though they acknowledge

that the concept was observed earlier (Espinosa et al. (1998)). This creates an unfortunate nomenclature
collision with matrix inversion, which is a related but distinct phenomenon. Thinking of it instead as element
reversal or a backwards element, or the anatomically graphic prolapsed elementmay help here.

3Simulation could be viewed as coercing the computer into obeying the physics of our current universe,
instead of drifting into one of the myriad other ones that the math permits, but our physical laws do not.
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Figure 6.1.: A tetrahedron is sitting on a table (left). We squish its top vertex down (center,
left) until it has been smashed into a pancake (center, right). We keep pushing,
and the tetrahedron flips inside out! This is not physically possible, but it
can happen numerically.

In animation, inversions happen all the time. We frequently squash things down to
Wile-E-Coyote-style pancakes, and if we then keep squashing, we get an inversion. Thus,
the energies we use need to be able to support this phenomenon.

 

Figure 6.2.: A 2D square is sitting on a table (left). We squish its top edge until it has been
smashed into a pancake (center), and then keep pushing, non-physically,
into the table. A prolapsed square whose area is equal to the original (center,
right) get a score of trS = 0, and past that, the score becomes negative.

Apparently this often happens in geometry processing as well, because one of the main
strengths of the ARAP model is that it is also able to see inversion. If an element has been
squished inside out with sufficient violence, the I1 = trS term that is so important in
ARAP also becomes negative (Fig. 6.2). In contrast, the original IC = tr

(
FTF

)
invariant

squares all of its singular values, so it can never become negative.

From Mooney’s perspective, it may have made sense to use the Cauchy-Green invariants
because the idea of an inversion was absurdly non-physical, so the math should preclude
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its very existence. Square everything! Nature abhors a negative invariant! He wasn’t
performing any numerical computations or animating any movies, so Cauchy-Green
was the way to go.4

6.2 ARAP (And Others) Don’t Do Great
Having poured all this effort into understanding ARAP, how do the final results look
when we push them into a solid mechanics simulation? To answer that, we should first
establish what we want out of a solid mechanics simulation. Our target application is
computer animation, and expressively realistic squashing and stretching are some of the
most important visual features, according to the Disney animators who wrote Johnston
and Thomas (1981) and Blair (2003).

Let’s look at what we expect under squashing in stretching. In Fig. 6.3, we have a square
of bubble gum, held between twometal plates. Under squashing, we expect that stuff will
pooch out of the top and bottom, and under stretching, we expect it to form a graceful
curve that flattens out to a line along the middle.

(a) Original Slab

(b) Squashed

(c) Stretched

Figure 6.3.: What we want from a 2D square of rubber (left). Under squashing, stuff
squeezes out the top and bottom (center). Under stretching, it swoops down
to a nice clean line along the middle (right).

What happens when we try to subject ARAP to these conditions? The results shown in
Fig. 6.4 aren’t great. This partially explains why ARAP is popular in geometry processing,
but less so in simulation. While it’s relatively robust5, it’s not very realistic, and never
pretended to be. If we look at the energy closely, ΨARAP = I2 − 2I1 − 3, we see that it

4If we want to go further down this rabbit hole, Mooney never actually invokes the Cauchy-Green
invariants, the follow-on analysis of Rivlin (1948) does 8 years later in Eqn. 3.4, which further muddies the
provenance. I think we’ve travelled down this hole far enough for the moment though.

5Provided you compute the exact rotation gradient!
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(a) Original Slab (b) Squashed,
ARAP

(c) Stretched, ARAP

Figure 6.4.: ARAP, under squashing (left) and stretching (right). Nowhere close to Fig. 6.3.

only involves the first and second invariants. However, we saw back in §5.3.2 and Fig. 5.4,
that the third invariant is the one that deals with volume.

The ARAP energy does not explicitly perform any volume preservation, because it
doesn’t even bother to compute the volume of each element. Instead, it only cares about
preserving relative lengths. That’s why Fig. 6.4 looks like a length of chickenwire being
stretched and squashed.

6.2.1 A Brief Aside: The Lamé Parameters

The ARAP model only preserves lengths, not volumes. Thus, we didn’t need parameters
describing how much relative length and volume preservation we wanted. But, we’re
going to need such parameters in a moment, so let’s describe them now.

These are usually specified using the Lamé parameters, µ and λ. The µ parameter controls
length preservation, and is also sometimes called the shear modulus or Lamé’s second
parameter. The λ parameter controls volume preservation, and is sometimes called Lamé’s
first parameter.6 If you want lots of volume preservation, you set λ to be much larger than
µ. Conversely, if you want more length preservation, you push up the value of µ.

Just to make your life more difficult, many simulators, including Fizt, don’t take in values
for µ and λ directly. Instead, they accept an equivalent set of parameters: the Young’s
modulus E, and Poisson’s ratio, ν. The conversion from (E, ν) and (µ,λ) is:

µ =
E

2(1 + ν)
(6.3)

λ =
Eν

(1 + ν)(1− 2ν)
. (6.4)

Hold on. When ν = 1
2 , the value of λ creates a divide-by-zero that blasts off to infinity? Is

this a mistake?

6I know. The λ sets up a naming collision with the eigenvalues λi. I don’t make the rules here, but it
should be clear from context which one I mean.
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It’s correct: specifying ν = 1
2 means that volume must be preserved at all costs, no matter

how much it ruins the stability of the simulation. Biological tissues like muscle and fat
are known to have ν ≈ 1

2 (Greaves et al. (2011)), but they’re not exactly 1
2 , so we can still

chug ahead.

6.2.2 St. Venant Kirchhoff Doesn’t Do Better

With the Lamé preliminaries out of the way, let’s look at St. Venant Kirchhoff to see how
it compares to ARAP. We’re moving past the stretching-only version and finally adding
the “volume preservation” term to the right to arrive at the full model:

ΨStVK = µ‖E‖2F +
λ

2
tr2(E). (6.5)

Since we care how fleshy our cartoon characters look, lets try this out with ν = 0.49 in
Fig. 6.5.7 First the good news: the stretching looks better than ARAP. At least it bows
a little in the middle, even though it doesn’t give us the clean line we want along the
middle. But what is going on under squashing?! It poofs up slightly along the top and
bottom, but then some bizarre overlap and collapse happens along the sides!

(a) Original Slab (b) Squashed,
StVK

(c) Stretched, StVK

Figure 6.5.: StVK, under squashing (middle) and stretching (right). What is going on
with squashing?!

7If you’re a stickler, the Lamé conversion formulas should be slightly different for StVK because it’s a
quartic model. We’re going to abandon StVK as a whole in a minute though, so I’m not going to spend time
on that.
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What we’re seeing is that StVK is a card-carrying member of the Cauchy-Green Club:

ΨStVK = µ‖E‖2F +
λ

2
tr2(E)

=
µ

4
‖E‖2F +

λ

8
tr2(FTF− I) (Definition of E, and pull out the 1

2 )

=
µ

4
‖E‖2F +

λ

8
tr(FTF− I) tr(FTF− I) (Make the squaring explicit)

=
µ

4
‖E‖2F +

λ

8

(
tr(FTF)2 − 6 tr(FTF) + 9

)
(Eqn. B.13 and tr I = 3)

=
µ

4
‖E‖2F +

λ

8

(
I2
C − 6IC + 9

)
(Definition of IC)

=
µ

4
(IIC − 2IC + 3) +

λ

8

(
I2
C − 6IC + 9

)
. (From Eqn. 5.10)

As we just saw in §6.1.2, the Cauchy-Green invariants don’t know about inversion. In
fact, they deliberately put on blinders by squaring it away. Thus, the bizarrely collapsed
and overlapping elements in Fig. 6.5 are elements that have inverted. StVK thinks they’re
not inverted, due to its Cauchy-Green myopia, so it does not exert any forces that try to
correct things.

Thus, StVK makes some progress under stretching, but this behavior under squashing
simply won’t do.

6.2.3 Co-Rotational Doesn’t Do Better

Next up, let’s try that co-rotational model that everybody (Müller et al. (2002); Etzmuss
et al. (2003); Irving et al. (2004)) simultaneously re-discovered back in the mid-2000s:

ΨCoRot =
µ

2
‖F−R‖2F +

λ

2
tr2 (S− I) . (6.6)

As you can see in Fig. 6.6, things get really weird. The freakiness around squashing we
saw with StVK is gone, but now it’s replaced with bigger freakishness under stretching!
Why did the slab turn into a prolapsed trampoline!?

Let’s unpack that so-called “volume preserving” term. Following the same steps as StVK,
we get:

ΨCoRot =
µ

2
‖F−R‖2F +

λ

2

(
I2

1 − 6I1 + 9
)

. (6.7)

What a minute ... where’s I3? What kind of a shady volume term doesn’t even compute
the volume? A linearized volume term, that’s what kind. That won’t do here.
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(a) Original Slab (b) Squashed,
ν = 0.2

(c) Stretched, ν = 0.2

(d) Original Slab
(e) Squashed,

ν = 0.3

(f) Stretched, ν = 0.3

(g) Original Slab

(h) Squashed,
ν = 0.49

(i) Stretched, ν = 0.49

Figure 6.6.: Co-rotational, with increasing ν. As ν → 1/2, stretching gets really strange.

6.2.4 Neo-Hookean Is Okay Unless It Burns The House Down

Finally, let’s try the Neo-Hookean material, which we can re-write in terms of the Smith
et al. (2019) invariants:

ΨBW08 =
µ

2
(‖F‖2F − 3)− µ log(J) +

λ

2

(
log(J)

)2
=
µ

2
(I2 − 3)− µ log(I3) +

λ

2

(
log(I3)

)2
.
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The I3 invariant shows up for sure, so at least we’re not getting suckered into using some
sham volume preservation term that doesn’t even know the definition of “volume”.

The results of the simulation are in Fig. 6.7. First the good news: under stretching,
Neo-Hookean finally gives us that nice, stretched-out bubble gum look that we wanted.
Then then bad: under squashing, Neo-Hookean produces a NaN that burns down the rest
of the simulation.

(a) Original Slab

Ex
pl
od

ed

(b) Squashed,
ν = 0.49

(c) Stretched, ν = 0.49

Figure 6.7.: Neo-Hookean material looks great under stretching (right), but produces a
NaN and explodes under squashing.

The culprit is that log(I3) term, since as I3 → 0, we get the singularity log(I3)→ −∞. It’s
actually slightly worse, since there’s a squared

(
log(J)

)2 term that blasts off even more
rapidly towards infinity.

Now our speculative motivations from §6.1.2 about Mooney using the squared invariants
rears its ugly head. Under this interpretation, nature abhors a negative invariant, so a
log(I3) term has been inserted as a barrier function to ensure that we never cross the
I3 = 0 threshold. In this world view, we abhor a negative invariant so much that we give
the energy permission to burn down the entire simulation if it looks like a negative is about to
appear.

Computer animation does not ascribe to this view. Again, Wile-E-Coyote-style pancakes
happen all the time. They don’t persist very long; after the initial impact, the Road Runner’s
anvil usually falls away, and the coyote blows into his thumb to re-inflate himself. A
good energy in this scenario should allow pancakes and inversions to occur, but once the
anvil forces are removed, sproing the coyote back into his original shape.

6.3 A Better Neo-Hookean Energy?

6.3.1 So Many Neo-Hookeans

We looked at one Neo-Hookean energy in §6.2.4, but there are a whole lot of energies
that call themselves “Neo-Hookean”. We even saw one way back in Eqn. 2.6 which was
just the Dirichlet energy in disguise. If Fig. 6.7, we saw that we can get good-looking
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stretching shapes out of Neo-Hookean, but it explodes under squashing. Maybe one of
these other energies that calls itself “Neo-Hookean” can do better?

Here’s a few I found in the literature:

ΨA =
µ

2
(I2 − 3)− µ log I3 +

λ

2
(I3 − 1)2 (Ogden (1997))

ΨB =
µ

2

 I2

I
2
3
3

− 3

+
λ

2
(I3 − 1)2 (Bower (2009))

ΨC =
µ

2

 I2

I
2
3
3

− 3

+
λ

2
(I3 − 1). (Wang and Yang (2016))

We saw before that any log(I3) will create an infinity under pancake states, so ΨA is
already out of the running. The ΨB and ΨC energies don’t contain a log(I3), but they
instead have I2

I
2
3
3

terms. These terms have the same problem: as I3 → 0, the I2

I
2
3
3

is standing

there with a match and a can of gasoline, ready to burn everything down with an∞.
That’s not helpful either.

6.3.2 Let’s Mix-And-Match Our Own

Still, if we look at ΨA, ΨB, and ΨC, we can see some glimmers of hope. That µ2 (I2 − 3)
in front of ΨA, which also appears in front of ΨBW08, is a well-behaved Dirichlet-like
term. It doesn’t give us the behavior we want, but at least it will never generate a
simulation-destroying singularity.

All three of the energies also incorporate a λ
2 (I3 − 1)2 term. This is well-behaved as well!

It can never create a divide-by-zero error, and unlike the co-rotational model, it uses the
100% certified, honest-to-goodness volume-measuring, I3 invariant. Maybe we can just
mix-and-match these two components to get our own Neo-Hookean flavor:

ΨD =
µ

2
(I2 − 3) +

λ

2
(I3 − 1)2.

This looks quite reasonable, doesn’t it? Until you try to simulate it. In Fig. 6.8, we see
what happens at the first step of the simulation, even when no forces have been applied. The
mesh shrinks! The artifact becomes less pronounced as ν → 1

2 , but is still clearly visible.
Other biomechanics works have observed similar phenomena (e.g. Blemker et al. (2005)),
though not in the context of authoring an inversion-friendly Neo-Hookean energy. The
solution is usually to set λ ≈ 1000µ, which corresponds to ignoring the artifact by always
keeping ν really close to 1

2 . Let’s try to do better.

6.3.3 A Stable Neo-Hookean Energy

Why does the mesh shrink to begin with? First, it has a Dirichlet-like term, µ2 (I2 − 3),
which we first saw in §2.3.4 when it tried to collapse our entire mesh down to a point.
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(a) Original Slab (b) ΨD, ν = 0.49 (c) ΨD, ν = 0.45

(d) ΨD, ν = 0.4 (e) ΨD, ν = 0.3 (f) ΨD, ν = 0.2

Figure 6.8.: ΨD, our first attempt at a mix-and-match Neo-Hookean energy, freakishly
causes the mesh to shrink, even if no forces are being applied. As ν decreases,
the problem gets worse, but it visibly persists even as ν ≈ 1

2 .

Second, it has a volume preservation term, λ2 (I3 − 1)2, which tries to keep I3 as close to
the original volume (which corresponds to 1) as possible. Even in the absence of any
external forces, these two terms are pulling in opposition to each other, and the true
“rest-state” that a mesh will have is the middle ground where these two forces cancel out.

This cancellation point will not be when I3 = 1. It will instead be at some compromise
point with the dueling Dirichlet force, which wants to pull everything down into the
zero-volume I2 = 0 state. In this duel, if we increase λ, then λ

2 (I3 − 1)2 gains the upper
hand and the artifact become smaller.

Here’s an idea: why don’t we give the λ
2 (I3 − 1)2 upper hand by making the element

fatter? Instead of trying to get back to the I3 = 1 state, why don’t we tell the energy to
return to some I3 = α state, where α > 1? Then when it has to compromise with the
Dirichlet term, the slightly shrunken version that they balance out to will be the I3 = 1
state we originally wanted?

We can write this out in more detail by taking the PK1 of ΨD:

∂ΨD
∂F

= µF + λ(I3 − 1)
∂I3

∂F

= µF + λ(I3 − 1)

[
f11 −f10

−f01 f00

]
. (In 2D)

If everything was working as it should the PK1 would be all zeros under zero deforma-
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tion,8 F = I, but we see that it doesn’t work out that way:

∂ΨD(I)

∂F
= µI + λ(1− 1)I

= µI.

That’s not great, but we knew it was going to happen. Now let’s introduce our α factor,
and see how much chubbier we need to make each element:

∂Ψα

∂F
= µF + λ(I3 − α)

∂I3

∂F

= µF + λ(I3 − α)

[
f11 −f10

−f01 f00

]
[

0 0
0 0

]
= µI + λ(1− α)I. (Plugging in F = I, ∂Ψα

∂F = 0)

The last line encodes the constraint 0 = µ+ λ(1− α). Solving for α yields:

α = 1 +
µ

λ
. (6.8)

We have not seen the ∂Ψ
∂F = 0 explicitly named anywhere, so in Smith et al. (2019) we

decided to call it the “rest-stability” criterion. Our rest-stable Neo-Hookean energy is
then:

ΨSNH =
µ

2
(I2 − 3) +

λ

2
(I3 − α)2

=
µ

2
(I2 − 3) +

λ

2

(
I3 − 1− µ

λ

)2

.

Expanding the square, we get:

ΨSNH =
µ

2
(I2 − 3)− µ(I3 − 1) +

λ

2
(I3 − 1)2 +

(
µ

λ

)2

.

Constant factors only translates the overall energy andget burnedoffunderdifferentiation,
so this is equivalent to:

ΨSNH =
µ

2
(I2 − 3)− µ(I3 − 1) +

λ

2
(I3 − 1)2. (6.9)

This is our final Stable Neo-Hookean (SNH) energy.9

8If no deformation is happening, the element shouldn’t need to push back on anything, right? If the
PK1 is all zeros, then the force will be all zeros after ∂F

∂x
gets applied.

9The Smith et al. (2019) paper also adds an origin barrier term that further complicates things. That
version is not the one that is used internally at Pixar. The ΨSNH energy is. The origin barrier was added
because the paper’s referees insisted that a spurious but extremely-difficult-to-reach root at F = 0 would
destabilize the energy. Extensive production experience has shown that it does not.
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6.4 A Bunch of Other Stable Energies
We can apply this approach more generally. Just to drive you crazy, a bunch of other
energies areusuallywrittendownwithout anyvolumepreservation term.The assumption
is that you will somehow add your own. For example, the two-term Mooney Rivlin
model can be written:

ΨMR = µ0(IC − 3) +
µ1

2
(I2

C − IIC − 3).

If you try to simulate this, you get the collapsed mesh on the left of Fig. 6.9. Clearly, a
volume term is needed. We could be stubborn, insist that we learned nothing from the
previous section, and just patch on a (I3 − 1)2 to obtain:

ΨMR+ = µ0(IC − 3) +
µ1

2
(I2

C − IIC − 3) +
λ

2
(I3 − 1)2.

Predictably, we then encounter the same mesh contraction problems, as seen on the right
side of Fig. 6.9. We can do better.

(a) ΨMR, no volume term (b) ΨMR+, ν = 0.45

Figure 6.9.: Mooney-Rivlin, without a volume term (left), and with a volume term, but
without rest stability (right). Same contraction problems as before: the mesh
shrinks, even though no forces are being applied.

6.4.1 Stable Mooney-Rivlin

I’m being slightly abusive here and mixing the Cauchy-Green and Smith et al. (2019)
invariants. But, as we saw in §5.3.3.2, the IIC term gets a lot bigger when written in
terms of the new invariants. Here’s the Stable Mooney-Rivlin energy,

ΨSMR = µ0(IC − 3) +
µ1

2
(I2

C − IIC − 3) +
λ

2
(I3 − α)2,

and the task is now to solve for α in the PK1 when F = I. The PK1 is:

∂ΨSMR
∂F

= 2µ0F + µ1ICF− 2µ1FF
TF + λ(I3 − α)

[
f11 −f10

−f01 f00

]
.
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Pushing through, the alpha works out to:

0 = 2µ0I + 3µ1I− 2µ1I + λ(1− α)I

2µ0I + µ1I + λ(1− α)I

α =
2µ0 + µ1

λ
+ 1

The final Stable Mooney-Rivlin energy takes on a form similar to Stable Neo-Hookean:

ΨSMR = µ0(IC − 3) +
µ1

2
(I2

C − IIC − 3) +
λ

2

(
I3 −

2µ0 + µ1

λ
− 1

)2

(6.10)

= µ0(IC − 3) +
µ1

2
(I2

C − IIC − 3) +
λ

2
(I3 − 1)2 − (2µ0 + µ1)(I3 − 1). (6.11)

The new terms are shown in red.

6.4.2 Stable Arruda-Boyce

Let’s do it again for the energy of Arruda and Boyce (1993). A three-term version of this
is:

ΨAB =
µ

2
(I2 − 3) +

µβ1

4
(I2

2 − 9) +
µβ2

6
(I3

2 − 27).

Our stable version is,

ΨSAB =
µ

2
(I2 − 3) +

µβ1

4
(I2

2 − 9) +
µβ2

6
(I3

2 − 27) +
λ

2
(I3 − α)2,

and after obtaining α = 1 + µ
λ (1 + 3β1 + 9β2), the final version is

ΨSAB =
µ

2
(I2 − 3) +

µβ1

4
(I2

2 − 9) +
µβ2

6
(I3

2 − 27) +
λ

2

(
I3 − 1− µ

λ
(1 + 3β1 + 9β2)

)2

(6.12)

=
µ

2
(I2 − 3) +

µβ1

4
(I2

2 − 9) +
µβ2

6
(I3

2 − 27) +
λ

2
(I3 − 1)2 − µ(1 + 3β1 + 9β2)(I3 − 1).

(6.13)

Again, the new terms are in red.

6.4.3 Stable Fung Hardening

Finally, let’s look at the hardening model of Fung (2013). This energy usually doesn’t
appear all by itself, but is added so that a material becomes dramatically stiffer (hardens)
under large stretching. Here we append it to our Stable Neo-Hookean model,

ΨSNH+Fung =
µ0

2
(I2 − 3) +

λ

2
(I3 − α)2 +

γ

2

(
e
µ1
2

(I2−3) − 1
)

,
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and after solving for α = 1 + µ0+γµ1

λ , we obtain

ΨSNH+Fung =
µ0

2
(I2 − 3) +

λ

2

(
I3 − 1− µ0 + γµ1

λ

)2

+
γ

2

(
e
µ1
2

(I2−3) − 1
)

(6.14)

=
µ0

2
(I2 − 3) +

λ

2
(I3 − 1)2 +

γ

2

(
e
µ1
2

(I2−3) − 1
)
−(µ0 + γµ1)(I3 − 1). (6.15)

In general:When obtaining the rest stabilization term α, the expressions tend to take the
form α = 1 + β

λ . When inserted into (I3 − α)2, these then separate (up to constant) into
the original λ2 (I3− 1)2 volume term, and an energy-specific stabilization term−β(I3− 1).

Go forth and design your own stable energy!
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Chapter 7

The Analytic Eigensystems of Isotropic
Energies

This chapter is a loose retelling of §4 from Smith et al. (2018) and §4 and §5 in Smith et al.
(2019). If you want to cut to the chase, Matlab code that implements the final algorithm
is given in Fig. 7.7. Plug your favorite isotropic energy into line 11, and it will spit out the
analytic eigenvalues.

7.1 Keeping Everything Semi-Positive-Definite
The core ofFizt andBaraffandWitkin (1998)-style integration is theuseof apreconditioned
conjugate gradients (PCG) solver. PCG requires that the underlying matrix A is semi-
positive-definite, i.e. that all of its eigenvalues are greater than or equal to zero. This is
usually written somewhat obtusely in linear algebra textbooks as:

xTAx ≥ 0 ∀x.

Another way to look at this is through the productAx = y. Positive-definiteness implies
that the sign of each entry in y must always match the corresponding entry in x. The
matrixA is not allowed to flip the sign of any entry in x, no matter what the entries in x
are. If it does, when we compute the dot product xTy, the negatives of x and y will not
mutually annihilate, and you can end up with a result less than zero.

We care about this property because if the system isn’t semi-positive-definite, it implies
the existence of multiple, physically valid, energetically equivalent solutions. In that case,
the optimization will not know which solution to pick, and can oscillate indecisively
between them forever, or explode spectacularly to infinity. This ambiguity can and
does happen in the physical systems we are examining, but let’s put that fact aside for
the moment. In the moment, we want to be able to hand to our existing Fizt solver a
semi-positive-definite system. How can we know for sure that all the Hessians that came
out of all of our ∂Ψ

∂F and ∂Ψ
∂x manipulations produced all-positive eigenvalues?

90



7. The Analytic Eigensystems of Isotropic Energies

One way would be to compute the eigendecomposition of the global system matrix you
assembled using the ∂2Ψ

∂F2 from every element in your simulation (Nocedal and Wright
(2006)). If any of those eigenvalues are less than zero, you can perform a projection to
snap those back to zero, reassemble a modified matrix, and then perform PCG using this
modified matrix. We would prefer not to do this, because PCG runs in roughly O(N

3
2 )

time, but an eigendecomposition of the global matrix takesO(N3). The cure is worse than
the disease. We can instead try a per-element projection in the style of Teran et al. (2005),
where we compute a eigendecomposition for each element’s ∂2Ψ

∂F2 , which only involves
taking the eigendecomposition of a bunch of 9× 9 matrices, not the globalN ×N matrix.
The sum of semi-positive-definite matrices is known to also be semi-positive definite, so
the strategy is sound.

7.2 Can ARAP Go Indefinite?
Maybe we’re worrying about nothing, and the energies we’re interested in can’t even go
indefinite. To see if this is true, let’s look at the ARAP energy.

Fortunately, the slick representation we found for the rotation gradient ∂R∂F already gives
analytic expressions for its own eigendecomposition. From there, it’s only a short skip
and jump to obtain the analytic eigenvalues of the entire ARAP energy. From §5.5.2, the
flattened Hessian for ARAP is:

vec

(
∂2ΨARAP
∂F2

)
= 2I9×9 − 2H1.

We know what the eigendecomposition of 2I9×9 is. All the eigenvalues are λ0...8 = 2, and
since the eigenvalues are all the same, the eigenvectors are not unique. Any basis than
spans a rank-9 subspace will do.

We also know what the eigensystem of H1 from §5.4.4. Here they are again:

λ0 =
2

σx + σy
Q0 =

1√
2
U

0 −1 0
1 0 0
0 0 0

VT

λ1 =
2

σy + σz
Q1 =

1√
2
U

0 0 0
0 0 1
0 −1 0

VT

λ2 =
2

σx + σz
Q2 =

1√
2
U

 0 0 1
0 0 0
−1 0 0

VT

λ3...8 = 0 Q3...8 = subspace orthogonal toQ0,1,2.
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Multiplying amatrix by a constant only scales its eigenvalues, so−2H1 has the eigenvalues

λ0 =
−4

σx + σy
λ1 =

−4

σy + σz
λ2 =

−4

σx + σz
λ3...8 = 0, (7.1)

and the eigenvectors remain the same.

So, what’s the eigensystem of their sum, I9×9 − 2H1? Unfortunately, there is no magic
theorem that takes the eigendecomposition of two matrices and tells you the eigende-
composition of their sum.

Unless if one of the matrices has a special structure, like I9×9! In that case, you can just
add the eigenvalues from the diagonal matrix to the eigenvalues of your second matrix.
The analytic eigendecomposition of the ARAP energy is then:

λ0 = 2− 4

σx + σy
Q0 =

1√
2
U

0 −1 0
1 0 0
0 0 0

VT (7.2)

λ1 = 2− 4

σy + σz
Q1 =

1√
2
U

0 0 0
0 0 1
0 −1 0

VT (7.3)

λ2 = 2− 4

σx + σz
Q2 =

1√
2
U

 0 0 1
0 0 0
−1 0 0

VT (7.4)

λ3...8 = 2 Q3...8 = subspace orthogonal toQ0,1,2. (7.5)

First of all, who knew that ARAP’s eigendecomposition had such crisp expressions? I’m
used to seeing the Hessian as a chaotic churn of numbers, and taking its eigendecomposi-
tion just plunges you further into the primordial soup. But, this crystalline eigenstructure
was sitting there at the bottom this whole time! A pleasant surprise.

Second, and returning to the task at hand, can the energy go indefinite? Certainly λ3...8

are all safely positive for all time, but when do λ0,1,2 go negative? Let’s look at λ0 as an
example:

λ0 =2− 4

σx + σy
≤ 0

2 ≤ 4

σx + σy

σx + σy ≤ 2.

Similar expressions appear for the other two:

λ1 ≤ 0 ⇐⇒ σy + σz ≤ 2 (7.6)
λ2 ≤ 0 ⇐⇒ σx + σz ≤ 2. (7.7)
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Figure 7.1.: From left to right: An undeformed element is already semi-definite. Squash-
ing along y makes it indefinite. Stretching enough in xmakes it semi-definite
again. Squashing y even further pushes us back into indefiniteness.

Uh oh. Don’t these conditions get tripped all the time? Let’s put a single element through
its paces in Fig. 7.1. If an element is undergoing zero deformation, σx = σy = 1, it
is already flirting with disaster, as λ0 = 0. If any of these directions gets squashed,
e.g. λ0 = 1

2 while λ1 = 1, then this eigenvalue will be negative. The other direction could
pick up the slack, i.e. λ0 = 1

2 while λ1 = 3
2 , but if any direction is more squashed than the

other direction is stretched, then the eigenvalue will become negative. The only situation
where λ0 is safely positive is if both directions are being stretched.

The appearance of negative eigenvalues under squashing is well-known in mechanical
engineering, as it corresponds to the onset of buckling, as shown in Fig. 7.2. If you squash
a bar of material, will it buckle up or down? From a deformation energy standpoint, both
configurations will give the exact same score for ΨARAP. Therefore, we are currently stuck
between multiple, equally enticing solutions, which corresponds to a saddle point in
the energy. Saddle points possess both positive and negative curvature, a.k.a. indefinite
Hessians, and so the negative eigenvalues make sense. 

Figure 7.2.: From left to right:An undeformed bar. We squash it. Which direction should
it buckle in? Up or down? As far as the deformation energy goes, both have
exactly the same score!
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So yes: ARAP can go indefinite. However, we now also know its eigensystem in closed
form, so we can devise a projected Hessian quite easily. If we detect that any of the eigen-
values are less than zero, we can efficiently snap it back to zero. It works out to a few extra
lines on top of ARAP_Hessian from Fig. 5.10, which we’ll call ARAP_Hessian_Filtered
and give the code for in Fig. 7.3.

We didn’t have to numerically compute a 9× 9 eigendecomposition anywhere, which is
both faster and cleaner. Additionally, we got better intuition of when and why elements
go indefinite, and some fast, compact code for projected Hessians. Wouldn’t it be nice if
we could do this for every energy?

7.3 The Eigendecompositions of Arbitrary Energies
An analytic decomposition is not only available for the ARAP energy, it can be obtained
for any isotropic energy. It will take a little bit of work to find a generic expression, but
once we do, I’ll bake everything into a Matlab script for you (Fig. 7.5)

7.3.1 The General Eigensystem of I3

We’re actually 2/3 of the way to a generic approach already. We have the analytic
eigensystem for ∂2I1

∂F2 , which was given in §5.4.4 and §7.2. We also have the eigensystem
of ∂2I2

∂F2 , which was easy to get, because it’s a diagonal matrix.

If we can get the analytic eigensystem for ∂2I3
∂F2 , then maybe, just maybe, we can combine

the eigendecompositions for all three in some way to arrive at a generic approach. If
you’re an analysis rockstar, you can probably derive the eigensystem by taking the
variational derivative of I3 or using some related principle.

I am not an analysis rockstar, so this is not what I did. Just like in §5.4.2, I messed
around in Matlab with some easy cases where U = V = I and Σ was loaded up with
easy integers, until I found something that looked like a pattern, and then verified their
correctness symbolically using Mathematica. Not the most straight-line route to finding
analytic expressions, but there’s more than one way to skin a cat.
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1 function [H] = ARAP_Hessian_Filtered(F)
2 [U Sigma V] = svd_rv(F);
3

4 % get the twist modes
5 T0 = [0 -1 0; 1 0 0; 0 0 0];
6 T0 = (1 / sqrt(2)) * U * T0 * V’;
7

8 T1 = [0 0 0; 0 0 1; 0 -1 0];
9 T1 = (1 / sqrt(2)) * U * T1 * V’;

10

11 T2 = [0 0 1; 0 0 0; -1 0 0];
12 T2 = (1 / sqrt(2)) * U * T2 * V’;
13

14 % get the flattened versions
15 t0 = vec(T0);
16 t1 = vec(T1);
17 t2 = vec(T2);
18

19 % get the singular values in an order that is consistent
20 % with the numbering in the paper
21 s0 = Sigma(1,1);
22 s1 = Sigma(2,2);
23 s2 = Sigma(3,3);
24

25 % build the filter the non-trivial eigenvalues
26 lambda0 = 2 / (s0 + s1);
27 lambda1 = 2 / (s1 + s2);
28 lambda2 = 2 / (s0 + s2);
29 if (s0 + s1 < 2)
30 lambda0 = 1;
31 end
32 if (s1 + s2 < 2)
33 lambda1 = 1;
34 end
35 if (s0 + s2 < 2)
36 lambda2 = 1;
37 end
38

39 H = eye(9,9);
40 H = H - lambda0 * (t0 * t0’);
41 H = H - lambda1 * (t1 * t1’);
42 H = H - lambda2 * (t2 * t2’);
43

44 H = 2 * H;
45 end

Figure 7.3.: Matlab code to compute the projected Hessian of the ARAP energy in 3D.
Any eigenvalue that is less than zero is snapped back to zero. The lambda
terms are not set to zero directly, because they still need to cancel off the
entries of eye(9,9)when they are added to H.
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Weirdly enough, three of the eigenvectors of ∂2I3
∂F2 are exactly the same as ∂2I1

∂F2 ,

λ3 = σz Q3 =
1√
2
U

0 −1 0
1 0 0
0 0 0

VT

λ4 = σx Q4 =
1√
2
U

0 0 0
0 0 1
0 −1 0

VT

λ5 = σy Q5 =
1√
2
U

 0 0 1
0 0 0
−1 0 0

VT ,

and the eigenvalues are even simpler: just the singular values σ{x,y,z}. Just like we saw
with Eqn. 5.40, these correspond to infinitesimal rotations, so we call these the twist
matrices. The next three eigenpairs are so similar to the first three that you’re going to
think I typed them in wrong:

λ6 = −σz Q6 =
1√
2
U

0 1 0
1 0 0
0 0 0

VT

λ7 = −σx Q7 =
1√
2
U

0 0 0
0 0 1
0 1 0

VT

λ8 = −σy Q8 =
1√
2
U

0 0 1
0 0 0
1 0 0

VT .

They’re the same as the twist matrices, except the eigenmatrices are missing a −1, and
the eigenvalues are negated. Instead of a rotation, these encode both a rotation and a
reflection, so we call these the flipmatrices.

Since vec
(
∂2I3
∂F2

)
∈ <9×9, the Hessian contains a total of nine eigenpairs. We’ve already

found six, so what are the other three? So far, all the eigenmatrices we’ve seen contain 1s
and −1s somewhere along the off-diagonal. For last three eigenmatrices, it would make
sense if they corresponded to the on-diagonal scaling modes:

D0 = U

1 0 0
0 0 0
0 0 0

VT D1 = U

0 0 0
0 1 0
0 0 0

VT D2 = U

0 0 0
0 0 0
0 0 1

VT . (7.8)

As we will see, this happens sometimes, but not in general. The general expressions for
the last three eigenpairs are a little messier-looking than the other six. The last three
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eigenvalues are the roots of the depressed cubic equation,

λi = 2

√
I2

3
cos

1

3

arccos

(
3I3

I2

√
3

I2

)
+ 2π(i− 1)


 , (7.9)

where i ∈ {0, 1, 2}. The eigenvectors are then a linear combination of the scaling modes,

Qi =
2∑
j=0

zjDj where


z0 = σxσz + σyλi

z1 = σyσz + σxλi

z2 = λ2
i − σ2

z

,

and the exact weights in the combination varies based on the current deformation.1

7.3.2 All Isotropic Energies Have the Exact Same Eigenvectors

The nine eigenmatrices that we have just seen arise from I3 are in fact the eigenvectors
of all isotropic energies. No matter what isotropic energy you write down, these will
always be the eigenvectors. That primordial soup we saw when taking the numerical
eigendecomposition of <9×9 Hessians? It wasn’t a soup after all, it was a stack of the
same nine Lego blocks all along.

Given their importance, let’s list them again here, once and for all:

Qi∈{0,1,2} =
2∑
j=0

zjDj where


z0 = σxσz + σyλi

z1 = σyσz + σxλi

z2 = λ2
i − σ2

z

, (7.10)

Q3 =
1√
2
U

0 −1 0
1 0 0
0 0 0

VT Q4 =
1√
2
U

0 0 0
0 0 1
0 −1 0

VT Q5 =
1√
2
U

 0 0 1
0 0 0
−1 0 0

VT

(7.11)

Q6 =
1√
2
U

0 1 0
1 0 0
0 0 0

VT Q7 =
1√
2
U

0 0 0
0 0 1
0 1 0

VT Q8 =
1√
2
U

0 0 1
0 0 0
1 0 0

VT .

(7.12)
Howdowe know that these eigenvectors are so universal?We had that generic expression
for the Hessians from Eqn. 5.50 back in §5.5:

vec

(
∂2Ψ

∂F2

)
=

3∑
i=1

∂2Ψ

∂I2
i

gig
T
i +

∂Ψ

∂Ii
Hi. (7.13)

1Ever since we found these equations, it has bugged me that these three eigenpairs are much less
parsimonious than the other six. I suspect that there’s a slicker way to write these down, but it clearly
involves a trick I haven’t thought of yet.
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There are only two places that eigenvectors can come from: the Hi matrices and gig
T
i

outer products. We already have complete knowledge of the eigenvectors that arise in
the Hi terms:

• The Hessian of I1 has the twist eigenvectors (Eqn. 7.11). Past those, it doesn’t care –
the rest spans an arbitrary subspace.

• The Hessian of I2 is diagonal, so it is one big arbitrary, “don’t care” subspace.

• The Hessian of I3 has the twists eigenvectors, just like I1, so those will already
align. Then it has the flip and the scaling eigenvectors, but since I1 and I2 both had
arbitrary subspaces along those spans, they will just get pinned to flip and scaling.2

That leaves gigTi as the only term that could ruin our claim that we’ve found the nine
eigenvectors that can exist. Since it is an outer-product, each gig

T
i term is its own

eigenvector, i.e. the eigenvector is the normalized version of gi.

All three gradients, g1 = vecR, g2 = vec 2F, g3 = Eqn. B.23 are orthogonal to the twist
and flip eigenvectors.3 Therefore, these get chunked in with the Qi∈{0,1,2} eigenvectors,
so nothing new can appear from them either.

If you have an isotropic energy, these are the eigenvectors. It doesn’t matter how gnarly
the energy looks, these are the nine.4

7.3.3 Cranking Out Analytic Eigenvalues

If the eigenvectors are exactly the same for all isotropic energies, the only place where
energies stand apart must be the eigenvalues. We saw a generic (albeit ugly) way to
compute the analytic eigenvalues of I3, and we can generalize this by performing a
deflation (see e.g. Bunch et al. (1978)). We will explicitly project off the twist and flip
eigenmodes, so that what’s left over is a <3×3 system of scaling modes.

2A bunch of linear algebra identities are getting thrown around here that I haven’t mentioned before.
Don’t feel bad if you can’t follow it entirely.

3This appears as Lemma B.1 in Smith et al. (2019). Take g2 = vec 2F and Q3 as an example. First,
observe that the dot product vec (2F)T vec (Q3) = 0 can be written as the trace vec (2F)T vec (Q3) = 2F :

Q3 = tr
(

2FTQ3

)
. Then tr

(
2FTQ3

)
can be expanded using F = UΣVT and the definition ofQ3 to get

tr

2VΣUTU

0 −1 0
1 0 0
0 0 0

VT

 and simplified to tr

2

σx 0 0
0 σy 0
0 0 σz


0 −1 0

1 0 0
0 0 0


. The product of

the two matrices produces all zeros along the diagonal, so the trace is zero. Moreover, as long as the middle
matrix in Qi has all zeros along the diagonal, i.e. is a hollow matrix, this will always hold. Since the middle
matrix in all ofQ3...8 are all hollow, they are all orthogonal.

4The form of Eqn. 5.50 needs to be slightly more general to encompass all isotropic energies; some mixed
gig

T
j where i 6= j terms can appear too. This doesn’t make a difference; no new eigenvectors appear.
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The entries of this scaling-only, projected matrixA are:

aij =σk
∂Ψ

∂I3
+
∂2Ψ

∂I2
1

+ 4
I3

σk

∂2Ψ

∂I2
2

+ σkI3
∂2Ψ

∂I2
3

+ 2σk

(
I2 − σ2

k

) ∂2Ψ

∂I2∂I3
+ (I1 − σk)

(
σk

∂2Ψ

∂I3∂I1
+ 2

∂2Ψ

∂I1∂I2

)
(7.14)

aii =2
∂Ψ

∂I2
+
∂2Ψ

∂I2
1

+ 4σ2
i

∂2Ψ

∂I2
2

+
I2

3

σ2
i

∂2Ψ

∂I2
3

+ 4σi
∂2Ψ

∂I1∂I2
+ 4I3

∂2Ψ

∂I2∂I3
+ 2

I3

σi

∂2Ψ

∂I3∂I1
. (7.15)

In these equations, I have used a slightly irritating {i, j, k} notation. The symbol aii
denotes a diagonal entry, where if i lines up with the x direction, the σi on the right-
hand-side is replaced with σx. The symbol aij denotes an off-diagonal entry, and if this
corresponds to the (x, y) off-diagonal entry, then σk on the right-hand-side becomes σz ,
i.e. whichever coordinate does not appear as i or j. If you’re still confused, the Matlab
code for this is given in Fig. 7.4

The first three eigenvalues of the larger system are now the eigenvalues of the matrix
A. These can be solved for any number of ways, both numerical and analytic, using the
cubic equation, the method of Jenkins and Traub (1970), the method of Smith (1961), a
cornucopia of methods fromGolub and Van Loan (2013), or plain old Eigen (Guennebaud
et al. (2010)).

The other six eigenvalues, on the other hand, have a much more compact general form:

λ3 =
2

σx + σy

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σz

∂Ψ

∂I3
(7.16)

λ4 =
2

σy + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σx

∂Ψ

∂I3
(7.17)

λ5 =
2

σx + σz

∂Ψ

∂I1
+ 2

∂Ψ

∂I2
+ σy

∂Ψ

∂I3
(7.18)

λ6 = 2
∂Ψ

∂I2
− σz

∂Ψ

∂I3
(7.19)

λ7 = 2
∂Ψ

∂I2
− σx

∂Ψ

∂I3
(7.20)

λ8 = 2
∂Ψ

∂I2
− σy

∂Ψ

∂I3
. (7.21)

7.3.3.1 St. Venant-Kirchhoff

Let’s push through one instance of these eigenvalues, using our old friend the StVK
energy:

ΨStVK = µ‖E‖2F +
λ

2
tr2(E). (7.22)
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1 function [A] = Get_Stretching_System(Psi)
2 syms I1 I2 I3 sigma0 sigma1 sigma2 sigmai sigmak real;
3 A = sym(zeros(3,3));
4

5 % first derivatives
6 firstI1 = diff(Psi, I1);
7 firstI2 = diff(Psi, I2);
8 firstI3 = diff(Psi, I3);
9

10 % second derivatives
11 secondI1 = diff(firstI1, I1);
12 secondI2 = diff(firstI2, I2);
13 secondI3 = diff(firstI3, I3);
14

15 % mixed derivatives
16 secondI1I2 = diff(firstI1, I2);
17 secondI1I3 = diff(firstI1, I3);
18 secondI2I3 = diff(firstI2, I3);
19

20 % get the diagonal entry
21 aii = 2 * firstI2 + secondI1 + 4 * sigmai^2 * secondI2 + ...
22 (I3 / sigmai)^2 * secondI3 + 4 * sigmai * secondI1I2 + ...
23 4 * I3 * secondI2I3 + 2 * (I3 / sigmai) * secondI1I3;
24 A(1,1) = subs(aii, sigmai, sigma0);
25 A(2,2) = subs(aii, sigmai, sigma1);
26 A(3,3) = subs(aii, sigmai, sigma2);
27

28 % get the off-diagonal entry
29 aij = sigmak * firstI3 + secondI1 + 4 * (I3 / sigmak) * secondI2 + ...
30 sigmak * I3 * secondI3 + ...
31 2 * sigmak * (I2 - sigmak^2) * secondI2I3 + ...
32 (I1 - sigmak) * (sigmak * secondI1I3 + 2 * secondI1I2);
33 A(1,2) = subs(aij, sigmak, sigma2);
34 A(1,3) = subs(aij, sigmak, sigma1);
35 A(2,3) = subs(aij, sigmak, sigma0);
36

37 % symmetrize and simplify
38 A(2,1) = A(1,2);
39 A(3,1) = A(1,3);
40 A(3,2) = A(2,3);
41 A = Simplify_Invariants(A);
42 end

Figure 7.4.: Matlab/Octave code to get an analytic expressions for stretching subspace of
any isotropic energy Psi.
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The entries of theA matrix evaluate to something not so bad-looking:

aii = −µ+
λ

2
(I2 − 3) + (λ+ 3µ)σ2

i

aij = λσiσj .

The last six eigenvalues are available directly:

λ3 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
y + σ2

z − σyσz
)

(7.23)

λ4 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
x + σ2

z − σxσz
)

(7.24)

λ5 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
x + σ2

y − σxσy
)

(7.25)

λ6 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
y + σ2

z + σyσz

)
(7.26)

λ7 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
x + σ2

z + σxσz

)
(7.27)

λ8 = −µ+
λ

2
(I2 − 3) + µ

(
σ2
x + σ2

y + σxσy

)
(7.28)

A little verbose, but not too bad.

7.3.4 If You’re Lucky, Things Get Simpler

If we grind ΨARAP through Eqns. 7.14 - 7.21, we will get exactly the same eigenvalue
expressions that we obtained in Eqns. 7.2 - 7.5. But hang on a minute ... where did all the
ugly stuff from Eqns. 7.14 and 7.15 go?

In some cases, if you’re lucky, the first three eigenvectors work out to the scaling modes
in Eqn. 7.8. In these cases, the eigenvalues also take on the following closed forms:

λ0 =2
∂Ψ

∂I2
+
∂2Ψ

∂I2
1

+ 4σ2
x

∂2Ψ

∂I2
2

+ σ2
yσ

2
z

∂2Ψ

∂I2
3

+ 4σx
∂2Ψ

∂I1∂I2
+ 4I3

∂2Ψ

∂I2∂I3
+ 2σyσz

∂2Ψ

∂I3∂I1

(7.29)

λ1 =2
∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+ 4σ2
y

∂2Ψq

∂I2
2

+
I2

3

σ2
y

∂2Ψq

∂I2
3

+ 4σy
∂2Ψq

∂I1∂I2
+ 4I3

∂2Ψq

∂I2∂I3
+ 2

I3

σy

∂2Ψq

∂I3∂I1

(7.30)

λ2 =2
∂Ψq

∂I2
+
∂2Ψq

∂I2
1

+ 4σ2
z

∂2Ψq

∂I2
2

+
I2

3

σ2
z

∂2Ψq

∂I2
3

+ 4σz
∂2Ψq

∂I1∂I2
+ 4I3

∂2Ψq

∂I2∂I3
+ 2

I3

σz

∂2Ψq

∂I3∂I1

(7.31)

They’re still not that pretty, but the expression you get out at the end might be, 5 and the
need to call any additional solver has been removed entirely.

5Also, remember I promised I’ll bake all this out into a Matlab script for you.
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How do you know if you’ve hit the Eigenvalue Jackpot? If all the off-diagonal entries aij
work out to zero, then the scaling modes become decoupled, and you’ve hit the jackpot.
You can use Eqns. 7.29 - 7.31 instead of the building out an unwieldy matrix.

A bunch of energies hit the jackpot.

7.3.4.1 Symmetric Dirichlet

The Symmetric Dirichlet energy from Smith and Schaefer (2015b),

ΨSD =

(
‖F‖2F + ‖F−1‖2F

)
2

, (7.32)

has the following eigenvalues:

λ0 = 1 +
3

σ4
x

λ1 = 1 +
3

σ4
y

λ2 = 1 +
3

σ4
z

λ3 = 1+
σ2
x

I2
3

− (I2−σ2
x)σ3

x

I3
3

λ4 = 1+
σ2
y

I2
3

−
(I2−σ2

y)σ
3
y

I3
3

λ5 = 1+
σ2
z

I2
3

− (I2−σ2
z)σ

3
z

I3
3

λ6 = 1+
σ2
x

I2
3

+
(I2−σ2

x)σ3
x

I3
3

λ7 = 1+
σ2
y

I2
3

+
(I2−σ2

y)σ
3
y

I3
3

λ8 = 1+
σ2
z

I2
3

+
(I2−σ2

z)σ
3
z

I3
3

.

7.3.4.2 Symmetric ARAP

The Symmetric ARAP energy from Shtengel et al. (2017),

ΨSARAP =
µ

2

(
‖F−R‖2 + ‖F−1 −R−1‖2

)
, (7.33)

also hits the jackpot:

λ0 = µ

(
1− 2

σ3
x

+
3

σ4
x

)
λ1 = µ

(
1− 2

σ3
y

+
3

σ4
y

)
λ2 = µ

(
1− 2

σ3
z

+
3

σ4
z

)

λ3 = µ+
µ

σy+σz

[
1

σ2
y

+
1

σ2
z

− 1

σ3
y

− 1

σ3
z

−2

]

λ4 = µ+
µ

σx+σz

[
1

σ2
x

+
1

σ2
z

− 1

σ3
x

− 1

σ3
z

−2

]
λ5 = µ+

µ

σx+σy

[
1

σ2
x

+
1

σ2
y

− 1

σ3
x

− 1

σ3
y

−2

]
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λ6 =µ

[
1+

1

(σyσz)2
+
σ2
y+σ2

z

(σyσz)3
− 1

σ2
yσz
− 1

σyσ2
z

]

λ7 =µ

[
1+

1

(σxσz)2
+
σ2
x+σ2

z

(σxσz)3
− 1

σ2
xσz
− 1

σxσ2
z

]

λ8 =µ

[
1+

1

(σxσy)2
+
σ2
x+σ2

y

(σxσy)3
− 1

σ2
xσy
− 1

σxσ2
y

]

7.3.4.3 Co-rotational (sort of)

The Co-rotational energy hits two out of three cherries on the slot-machine,

ΨCR = µ‖F−R‖2 +
λ

2
tr2 (S− I)

and has the scaling modes weakly couple in a single rotation mode:

λ0 = 2µ+ 3λ Q0 =
1√
3
R

λ1,2 = 2µ Q1,2 = 2D subspace orthogonal to R.

λ3 = 2µ+ 2λ
(I1 − 3− 2µ)

(σy + σz)
λ4 = 2µ+ 2λ

(I1 − 3− 2µ)

(σz + σx)
λ5 = 2µ+ 2λ

(I1 − 3− 2µ)

(σx + σy)

λ6 = 2µ λ7 = 2µ λ8 = 2µ.

For all of these energies, projecting to semi-positive-definiteness is now straightforward:
look at the eigenvalues, and if they’re below zero, snap them to zero. As we did with
ARAP, we can also derive the exact conditions under which they become indefinite in
order to better understand their behavior.

None of these energies use the I3 invariant, and that’s not a coincidence. The invariant
I3 = σxσyσz couples the scaling modes; the exact thing that all these jackpot winners
don’t do. If your energy has I3 lurking in it somewhere, then it’s inevitable that the first
three eigenvalues will become non-linearly coupled.

7.3.4.4 Finally, Some Code, To Save You From Error-Riddled Typing

As promised, the code to produce these analytic eigensystems is provided in Fig. 7.5.
These implement the Simple Eigenvalue Jackpot case. If I3 appears in your energy, you’ll
still need to build out yourAmatrix using Eqns. 7.14 and 7.15. We will see an example
of that next.
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1 function [lambdas] = Get_Analytic_Eigenvalues(Psi)
2 syms I1 I2 I3 real;
3 syms sigma0 sigma1 sigma2 sigmai sigmaj sigmak real;
4 lambdas = sym(zeros(9,1));
5

6 % x-twist, y-twist, and z-twist
7 lambdas(4) = (2 / (sigma1 + sigma2)) * diff(Psi, I1) + ...
8 2 * diff(Psi, I2) + sigma0 * diff(Psi, I3);
9 lambdas(5) = (2 / (sigma0 + sigma2)) * diff(Psi, I1) + ...

10 2 * diff(Psi, I2) + sigma1 * diff(Psi, I3);
11 lambdas(6) = (2 / (sigma0 + sigma1)) * diff(Psi, I1) + ...
12 2 * diff(Psi, I2) + sigma2 * diff(Psi, I3);
13

14 % x-flip, y-flip, and z-flip
15 lambdas(7) = 2 * diff(Psi, I2) - sigma0 * diff(Psi, I3);
16 lambdas(8) = 2 * diff(Psi, I2) - sigma1 * diff(Psi, I3);
17 lambdas(9) = 2 * diff(Psi, I2) - sigma2 * diff(Psi, I3);
18

19 % x-scale, y-scale and z-scale
20 lambdaScale = 2 * diff(Psi, I2) + diff(Psi, I1, 2) + ...
21 4 * sigmai^2 * diff(Psi, I2, 2) + ...
22 sigmaj^2 * sigmak^2 * diff(Psi, I3, 2) + ...
23 4 * sigmai * diff(diff(Psi, I1), I2) + ...
24 4 * I3 * diff(diff(Psi, I2), I3) + ...
25 2 * sigmaj * sigmak * diff(diff(Psi, I3), I1);
26 lambdas(1) = subs(lambdaScale , {sigmai, sigmaj, sigmak}, ...
27 {sigma0, sigma1, sigma2});
28 lambdas(2) = subs(lambdaScale , {sigmai, sigmaj, sigmak}, ...
29 {sigma1, sigma0, sigma2});
30 lambdas(3) = subs(lambdaScale , {sigmai, sigmaj, sigmak}, ...
31 {sigma2, sigma0, sigma1});
32

33 % try to get the simplest expression
34 lambdas = Simplify_Invariants(lambdas);
35 end

Figure 7.5.: Matlab/Octave code to get analytic expressions for the eigenvalues of any
isotropic energy Psi. The routine for Simplify_Invariants is defined in
Fig. 7.6.
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1 function [out] = Simplify_Invariants(in)
2 syms I1 I2 I3 sigma0 sigma1 sigma2 real;
3 out = subs(in, I1, sigma0 + sigma1 + sigma2);
4 out = subs(out, I2, sigma0^2 + sigma1^2 + sigma2^2);
5 out = subs(out, I3, sigma0 * sigma1 * sigma2);
6 out = simplify(out);
7 out = subs(out, sigma0 + sigma1 + sigma2, I1);
8 out = subs(out, sigma0^2 + sigma1^2 + sigma2^2, I2);
9 out = subs(out, sigma0 * sigma1 * sigma2, I3);

10 out = simplify(out);
11 end

Figure 7.6.: Matlab/Octave code for simplifying expressions using the definitions of the
invariants. This is called from Get_Analytic_Eigenvalues in Fig. 7.5.

7.4 The Stable Neo-Hookean Eigensystem
Let’s take a closer look at the Stable Neo-Hookean eigensystem, because it exhibits some
qualitatively different behaviors from all the “jackpot” energies we just saw.

We can obtain the complete eigenmodes by punching the ΨSNH symbolically into
Matlab/Octave code and running the code from Figs. 7.4 and 7.5. An example of the
calls is given in Fig. 7.7.

The resulting scaling system is:

aii = µ+ λ
I2

3

σ2
i

aij = σk
(
λ(2I3 − 1)− µ

)
.

The twist and flip eigenvalues are:

λ3 = µ+ σz
(
λ(I3 − 1)− µ

)
(7.34)

λ4 = µ+ σx
(
λ(I3 − 1)− µ

)
(7.35)

λ5 = µ+ σy
(
λ(I3 − 1)− µ

)
(7.36)

λ6 = µ− σz
(
λ(I3 − 1)− µ

)
(7.37)

λ7 = µ− σx
(
λ(I3 − 1)− µ

)
(7.38)

λ8 = µ− σy
(
λ(I3 − 1)− µ

)
. (7.39)

7.4.1 When Does It Go Indefinite?

When do these eigenvalues go indefinite? These are slightly more difficult to analyze,
because the relations are still non-linear. When we were obtaining the eigensystem of I3,
the flip modes corresponding to λ6...8 were always negative, so let’s take a look at what
happens after they’ve been plugged into the Stable Neo-Hookean energy.
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1 % Boilerplate to load up the symbolic package in Octave
2 isOctave = exist(’OCTAVE_VERSION’, ’builtin’) ~= 0;
3 if (isOctave)
4 pkg load symbolic;
5 end
6

7 % Declare the invariants and constants
8 syms I1 I2 I3 mu lambda real;
9

10 % Build the SNH energy
11 Psi = (mu / 2) * (I2 - 3) - mu * (I3 - 1) + (lambda / 2) * (I3 - 1)^2;
12 % Build the ARAP energy
13 % Psi = I2 - 2 * I1 + 3
14

15 % Get the analytic twist and flip eigenvalues , and
16 % maybe the stretching values too, if you hti the jackpot
17 [lambdas] = Get_Analytic_Eigenvalues(Psi);
18

19 % Get the stretching matrix
20 A = Get_Stretching_System(Psi);
21

22 % Did we hit the Simple Eigenvalue Jackpot?
23 jackpot = A(1,2) + A(1,3) + A(2,3);
24 if (jackpot == sym(0))
25 printf(’You HIT the Jackpot!\n’);
26 printf(’No stretching matrix is needed.\n’);
27 printf(’Here are your eigenvalues:\n’);
28 lambdas
29 else
30 printf(’You MISSED the Jackpot!\n’);
31 printf(’The stretching eigenvalues are the three\n’);
32 printf(’eigenvalues from this matrix:\n’);
33 A
34 printf(’The last six are these:\n’);
35 lambdas(4:9)
36 end

Figure 7.7.: Matlab/Octave code for obtaining the analytic eigenvalues and stretching
system for the Stable Neo-Hookean energy, ΨSNH. If you want to see what it
feels like to win the Simple Eigenvalue Jackpot, uncomment line 13 and run
everything on ΨARAP.
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In particular, we can focus on λ6, and examine the conditions under which it becomes
zero, i.e. when it is on the cusp of becoming indefinite. Solving for the σx roots of the
quadratic

µ− σz
(
λ(σxσyσz − 1)− µ

)
= 0 (7.40)

yields the two roots:

σx =
λ+ µ±

√
4σyσzλµ+ (λ+ µ)2

2λσyσz
. (7.41)

Let’s examine a specific instance of λ and µ. As ν → 1
2 , which corresponds to biological

tissue like muscle and skin, λ→∞ and overwhelms the µ term.

Another way to phrase this domination of λ over µ is to set λ = 1 and µ = 0:

σx =
1± 1

2σyσz
=

{
0,

1

σyσz

}
. (7.42)

The σx = 0 corresponds to the total pancake case where the elements has been squashed
to zero volume. Indefiniteness make sense there; there are myriad ways to un-pancake
yourself.

The σx = 1
σyσz

condition is interesting if we view σyσz as the cross-sectional area
orthogonal to the σx direction:

σx =
1

area⊥
.

If the x direction has been squashed so much that its length is less than the inverse of area⊥,
then the material will buckle. These cases are illustrated in Fig. 7.8. If the middle of your
element does not bulge out far enough to stabilize your current amount of squashing,
the material has no choice but to buckle.

The twist eigenvalues produce the exact same roots under λ = 1, µ = 0, so those
modes are not safe from indefiniteness either. These conditions only apply to ν = 1

2 , but
nonetheless, our analytic eigenanalysis gives a glimpse into the qualitative behavior of
the Stable Neo-Hookean energy that was not possible before.

I wonder what running this eigenanalysis on your favorite energy will reveal?
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Figure 7.8.: From left to right: An undeformed volume is safely positive definite. As it is
squashed by 1

2 , the cross-sectional area has to be at least 2 to prevent it from
buckling. If this condition isn’t met, the volume does not have base wide
enough to hold up, and must buckle.
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Chapter 8

A Better Way For Anisotropic Solids

This chapter is a loose retelling of §4 and §5 from Kim et al. (2019). If you want to cut
to the chase, the Matlab code that spits out the analytic eigenvalues of an anisotropic
energy is given in §8.2.5.

8.1 What’s Anisotropy?
So far, we have looked at isotropic solids. If you squish them down, they bulge out the
exactly the same amount in all directions. If you stretch them out, they resist the same
amount, no matter which direction you’re pulling in. Most real-world solids don’t do
this exactly; they can be stiffer in some directions and softer in others.

Let’s compare a length of rubber band and a length of hemp rope sagging under gravity
(Fig. 8.1). The rubber band sags a whole bunch. While the rope sags too, it doesn’t dip

 

Figure 8.1.: Left pair: A length of rubber band sags a lot under gravity. Right pair: A
length of hemp rope sags less, because it contains stiff fibers that all run in a
preferred direction.

as far down, because it is composed of bundles of stiff fibers that all run in a single,
preferred direction. In the extreme, if we ran a steel reinforcement rod down the length
of the rope, it wouldn’t sag at all.
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The material is anisotropic. It’s stiffer in some directions than it is in others.

The same thing can happen in a volumetric solid. When we squash down an isotropic
material (Fig. 8.2), it bulges out equally in all directions. If the solid contains fibers that

 

Figure 8.2.: Left pair: An isotropic material bulges out equally in all directions Right
pair: Fiber reinforcement has been inserted, so it bulges less in that direction.
The lines along the front remain vertical.

all run in a specific direction, then it will be reluctant to pooch out in that direction.1 One
everyday material that does this is biological muscle. All the muscles in your body contain
fibers, and when you flex a muscle, your brain is telling those aligned fibers to contract,
i.e. become shorter (Fig. 8.3). When these fibers become shorter, they pull on the bones on

 

Figure 8.3.: Muscles are an anisotropic material. When fibers contract, they pull on the
bones on either side of the muscle.

either ends of the muscle, and that’s why your body moves. End of anatomy lesson.

1Avi Goyal suggested another (totally separate) example: trying to squash a block of Post-It Notes.
Pound on top with your fist, and basically nothing happens. But pinch it along the sides with your fingers,
and it pooches out easily.
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8.2 The (Wrong) Cauchy-Green Invariants, Again

8.2.1 The IVC and VC Invariants

How do we tell our energies that there’s a preferred anisotropy direction that we want to
be stiffer? Even if we have some anisotropy direction a ∈ <3 in mind, there’s nowhere to
plug it into our existing invariants.

In biomechanics (see e.g. the survey of Chagnon et al. (2015)), this is solved by introducing
a new set of invariants that explicitly take into account somevectora. These new invariants
gets stacked onto the end of our existing sequence of Cauchy-Green invariants:2

IVC = aTCa VC = aTCTCa, (8.1)

where, as before,C = FTF. The anisotropy direction only needs to be defined at the rest
 

Figure 8.4.: The anisotropy direction a only needs to be defined at the rest shape. It gets
automatically carried along as the object deforms.

shape (Fig. 8.4). To see why, we can unpack IVC into:

IVC = aTFTFa = (Fa)T Fa =
(
DsD

−1
m a

)T
DsD

−1
m a. (8.2)

On the right, we can see that the invariant is just two applications of DsD
−1
m a. The first

multiply, D−1
m a, rotates the fiber direction out of the original rest shape. Then it gets

rotated into the current deformation by the second multiply, Ds. Thus, the invariant will
automatically transform the original a into the appropriate orientation for the current
deformation.

8.2.2 Gradients and Hessians, Again

Let’s look at how to take the gradient and Hessian of an anisotropic energy.

2If you’re a real invariant nerd, it may bother you that these invariants don’t actually arise from
the characteristic polynomial of F. Where’s their generating equation? I don’t know. They’re definitely
translation and rotation invariant though, so they at least fit the definition of “invariant” in that sense.
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8.2.2.1 Anisotropic St. Venant Kirchhoff

There’s a bunch of different anisotropic energies appearing in the literature that we can
pick from, but for some reason people seem reluctant to name them. This one appears in
anonymous form in both Liu et al. (2017) and Holzapfel (2005):

ΨAStVK =
µ

2
(IVC − 1)2 . (8.3)

Since it follows the StVK approach of squaring aC-like term, let’s call it Anisotropic StVK.

The gradient and Hessian are,

∂ΨAStVK
∂F

= µ (IVC − 1)
∂IVC
∂F

(8.4)

vec

(
∂2ΨAStVK
∂F2

)
= µ

(
(IVC − 1)HIV + gIV g

T
IV

)
, (8.5)

where

∂IVC
∂F

= 2FaaT (8.6)

gIV = vec

(
∂IVC
∂F

)
= vec

(
2FaaT

)
(8.7)

HIV = vec

(
∂2IVC
∂F2

)
= 2aaT ⊗ I. (8.8)

Rather than slugging through these derivatives every time, just like in the isotropic
case (Eqns. 5.8 and 5.50), there is a generic, oh-thank-my-lucky-stars-I-only-need-scalar-
derivatives way of deriving the Hessian:

vec

(
∂2Ψ

∂F2

)
=

∂Ψ

∂IVC
HIV +

∂2Ψ

∂IV 2
C

gIV g
T
IV . (8.9)

Once you have the relatively easy ∂Ψ
∂IVC

and ∂2Ψ
∂IV 2

C
terms worked out3, you’re all done.

8.2.2.2 Anisotropic Square Root

Let’s try the generic approach on another (usually unnamed) energy that appears in
biomechanics (Alastrué et al. (2008)):

ΨASqrt =
µ

2

(√
IVC − 1

)2
. (8.10)

3Again, don’t be ashamed to use Mathematica or Matlab. Really.
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It’s almost exactly the same as the Anisotropic StVK energy, except for the square root.
For that reason, let’s call it the Anisotropic Square Rootmodel. The gradient is:

∂ΨASqrt

∂F
= µ

(
1− 1√

IVC

)
FaaT . (8.11)

We can get the Hessian by taking the scalar derivatives,

∂ΨASqrt

∂IVC
=
µ

2

(
1− 1√

IVC

)
∂2ΨASqrt

∂IV 2
C

=
µ

4IV
3
2
C

,

and plugging them in to get our final Hessian4:

vec

(
∂2ΨASqrt

∂F2

)
=
µ

2

(
1− 1√

IVC

)
HIV +

µ

4IV
3
2
C

gIV g
T
IV . (8.12)

All done. Except that the Hessian might be indefinite.

8.2.3 The Eigensystem of IVC

With Eqn. 8.9 in hand, we can apply the same approach as §7.3. If we can get an analytic
expression for the eigendecomposition ofHIV , thenwe can get the analytic eigenstructure
of any energy based on IVC.

Fortunately, Matlab hack-and-slashing quickly reveals that the eigensystem ofHIV has a
rank-six null-space, so there are only three non-trivial eigenpairs:

λ0,1,2 = 2 (8.13)

Q0 =

 aT

0 0 0
0 0 0

 Q1 =

0 0 0
aT

0 0 0

 Q2 =

0 0 0
0 0 0

aT

 . (8.14)

First off, it is an arbitrary subspace, so the forms given for Q0,1,2 are not unique. They’re
convenient to write in this form though. Second, the most general form of the eigenvalues
is λ0,1,2 = 2‖a‖22, but usually a is specified as a unit vector. The purpose of a is to convey
that you want things stiffer in this direction, but the amount of stiffness you want would
be communicated by some sort of µ constant. Baking it into the magnitude of awould
just cause confusion.

4This expression looks slightly different from the one I gave in Kim et al. (2019) because I pushed some
factors of 2 around in a different way. However, I assure you that if you work through all the terms, they are
indeed equivalent.
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8.2.4 The Eigensystems of Arbitrary IVC Energies

With the eigensystem ofHIV in hand, we can now build the eigensystems of arbitrary
IVC-based energies. Looking again at the generic form of these Hessians,

vec

(
∂2Ψ

∂F2

)
=

∂Ψ

∂IVC
HIV +

∂2Ψ

∂IV 2
C

gIV g
T
IV ,

we already know the eigensystemof the first term on the right, ∂Ψ
∂IVC

HIV . The eigenvectors
are still those from Eqn. 8.14, and the eigenvalues all get scaled by ∂Ψ

∂IVC
.

Adding the ∂2Ψ
∂IV 2

C
gIV g

T
IV term complicates things, because (again) there’s no general

theorem that helps you get the eigensystem of a sum of matrices, even if you already
know the eigensystems of the summands. But, while we’re not adding to a diagonal
matrix like we did in §7.2 and §7.3, we’re doing something similar. We’re adding a
rank-one update, gIV gTIV , to a matrix with an arbitrary subspace,HIV .

In our case, what happens is that one of the directions in the arbitrary subspace gets
pinned to gIV , i.e. the direction of the rank-one update. The other two directions are still
arbitrary, but they then get pinned to the subspace that is orthogonal to gIV .

More concretely, the first eigenpair is:

λ0 = 2

(
∂Ψ

∂IVC
+ 2IVC

∂2Ψ

∂IV 2
C

)
Q0 =

1√
IVC

FaaT . (8.15)

Keeping in mind that gIV = 2 vec
(
FaaT

)
, the eigenmatrixQ0 has indeed been pinned

to a normalized version of gIV .

The other two eigenvalues are:

λ1,2 = 2
∂Ψ

∂IVC
. (8.16)

The arbitrary subspace takes a little effort to construct, and in practice you never actually
compute these explicitly. However, to show that it can be done, we first define the twist
matrices,

Tx =

0 0 0
0 0 1
0 −1 0

 Ty =

0 0 −1
0 0 0
1 0 0

 Tz =

 0 1 0
−1 0 0
0 0 0

 .

Since the last two eigenvectors are arbitrary, you have to pick one of these matrices to
start with. Just for the sake of argument, let’s pick Tx. Then the second eigenmatrix
becomes:

Q1 = UTxΣVTA. (8.17)
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1 function [lambdas] = Get_Analytic_Eigenvalues(Psi)
2 syms mu I5 real;
3 lambdas = sym(zeros(3,1));
4

5 firstI5 = diff(Psi, I5);
6 secondI5 = diff(firstI5, I5);
7

8 lambdas(1) = 2 * (firstI5 + 2 * I5 * secondI5);
9 lambdas(2) = 2 * firstI5;

10 lambdas(3) = 2 * firstI5;
11

12 lambdas = simplify(lambdas);
13 end

Figure 8.5.: Matlab/Octave code for obtaining the analytic eigenvalues of an IVC-based
anisotropic energy. For reasons that will become clear in the next section,
IVC is instead called I5 in this code.

This effectively pins third eigenmatrix, which can be written in terms of Ty and Tz ,

Q2 = (σyây)UTzΣVTA− (σzâz)UTyΣVTA, (8.18)

where ây,z are the corresponding entries from â = VTa.

8.2.5 Matlab/Octave Implementation

Code that implements these expressions is given in Fig. 8.5, and examples running them
on ΨAS and ΨSqrt are in Fig. 8.6. Using these scripts, we obtain the following analytic
eigenvalues for Anisotropic StVK,

λ0 = 2µ(I5 − 1) + 4µI5 (8.19)
λ1,2 = 2µ(I5 − 1). (8.20)

and for Anisotropic Square Root:

λ0 = µ (8.21)

λ1,2 = µ

(
1− 1√

I5

)
. (8.22)

8.3 Better Invariants, Again

8.3.1 An Inversion-Aware Invariant

The energies we’ve looked all suffer from a version of the problem we saw in §6.1.2. They
can’t tell if an element has been poked inside-out, i.e. inverted / reversed / prolapsed.
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1 % Boilerplate to load up the symbolic package in Octave
2 isOctave = exist(’OCTAVE_VERSION’, ’builtin’) ~= 0;
3 if (isOctave)
4 pkg load symbolic;
5 end
6

7 % Declare the invariants and constants
8 syms I5 mu real;
9

10 % Build the Anisotropic StVK energy
11 Psi_AS = (mu / 2) * (I5 - 1)^2;
12 [lambdas_AS] = Get_Analytic_Anisotropic_Eigenvalues(Psi_AS)
13

14 % Build the Anisotropic Sqrt energy
15 Psi_Sqrt = (mu / 2) * (sqrt(I5) - 1)^2;
16 [lambdas_Sqrt] = Get_Analytic_Anisotropic_Eigenvalues(Psi_Sqrt)

Figure 8.6.: Matlab/Octave example calls to Get_Analytic_Anisotropic_Eigenvalues
for ΨAS and ΨSqrt.

Like the other Cauchy-Green-style invariants that came before it, IVC has gone out
of its way to throw away any reflection information, so it’s not a simple matter of
re-jiggering its usage in the energy. I haven’t said much about the VC invariant. Looking
at it again, VC = aTCTCa, it just doubles down on the squaring strategy that stomps the
information we care about, so it won’t help us either. Once again, we need to dream up a
new invariant.

Way back in §5.3.3.2, we got a new set of invariants by performing aFTF→ S substitution.
Then the pesky FTF doesn’t get the chance to stomp any reflections. We’re going to do
the same thing here. Our new anisotropic invariants are:

I4 = aTSa (8.23)
I5 = aTSTSa. (8.24)

Similar to §5.3.3.2, we’ve introduced a new lower-order invariant, so some renumbering is
needed. The new I5 invariant is equivalent to IVC5, but since we need to make room for
our new I4, we’re renumbering it to 5. It’s not ideal, but the Arabic numeral subscript
versus the non-subscripted Roman numeral at least has a distinct visual contrast.

8.3.2 The Gradient of I4

If we want to use the new I4 in our energies, we will first need its gradient:

∂I4

∂F
=
∂R

∂F
: FaaT + RaaT . (8.25)

5Since IVC = aTFTFa = aTVΣUTUΣVTa = aTVΣΣVTa = aTSTSa = I5
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Uh-oh, that ∂R∂F : FaaT term doesn’t look too friendly. Fortunately, we poured tons of
effort into understanding the structure of ∂R∂F back in §5.4. In 2D, this works out to:

∂R

∂F
: FaaT =

[1
1

]T
VTa

(σx − σy
σx + σy

)
U

[
0 −1
1 0

]
VT . (8.26)

There’s a lot going on here, but the term to focus on is σx−σy
σx+σy

, because as σx + σy → 0,
the gradient (and forces) will explode to infinity.

Is this some weird corner case that will never actually happen? Or do simulations hit this
state all the time, and using this gradient will doom all of our simulations to unexpectedly
and spontaneously explode? In order to investigate, I went ahead and coded up this
gradient the first time I derived it, and the infinity case was hit on the VERY FIRST
SIMULATION I RAN. I ran a few other ones, hoping that maybe I had just gotten unlucky.
The explosions occurred with alarming frequency. Clearly, this invariant is too volatile to
be used in its raw form.6

8.3.3 The Sign of I4

The information that is discarded by IVC is whether the element has inverted in the
anisotropy direction. This distinction is slightly different from the isotropic case. As shown

 

Figure 8.7.: An element inverts, but not in the fiber direction, shown in red. Therefore,
the value of I4 remains the same the entire time.

in Fig. 8.7, an element can be inverted, but unless it’s inverted in the fiber direction, the
invariant doesn’t, and shouldn’t, care about it. It is only when the fiber itself has been
pushed inside out (Fig. 8.8) that a negative appears in I4. What happens if we just try to
extract and use only the sign information from I4? Do the gradient and Hessian become
less volatile?

6As for the Hessian of I4, let’s just say I had to figure out how to print things in landscape mode on
legal-sized paper just to look at it. It’s not pretty, so let’s not even discuss it.
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Figure 8.8.: An element inverts in the fiber direction, shown in red. The sign of I4 then
dutifully goes negative.

Let’s write a sign-extracting signum function S(x):

S(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

. (8.27)

The derivative of S(x) is a fancy-looking-and-sounding Dirac delta function:7

δ(x) =

{
0 if x 6= 0
∞ if x = 0

(8.28)

There’s still an infinity in there, so things aren’t perfect, but this is still a pretty good
result. Just to be clear, we are looking at some supremely uncomplicated functions here
(Fig. 8.9). The S(x) is just a step function, and δ(x) would be the most boring function of
all, a line of zeros, if it wasn’t for its one spike to infinity. When we wrap I4 inside S(I4),

 

Figure 8.9.: Eqns. 8.27 and 8.28. Not much going on here, except that infinity.

the gradient becomes:
∂S(I4)

∂F
= δ(I4)

∂I4

∂F
. (8.29)

7Oooooh Paul Dirac, quantum mechanics, etc.
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The volatile ∂I4
∂F , rife with infinities, still appears. However, any explosions to infinity

are contained by the δ(I4) term, which stomps (almost) everything to zero.8 With this
better-behaved result in hand, we can now look at building a better anisotropic energy.

8.4 An Inversion-Aware Anisotropic Energy

8.4.1 Previous Models, and Their Issues

The square-root model from before had a few attractive properties:

ΨASqrt =
µ

2

(√
I5 − 1

)2
. (8.30)

We’ve now replaced IVC with I5 to follow our new numbering scheme, but they’re
equivalent.

The AStVK model was too non-linear; it raised everything to an unnecessarily high
4thpower, so the forces shoot off the top and bottom of the graph if you try to plot them
out (see Fig. 8.10). In addition to introducing really big forces, this will also ruin the
conditioning of the global Hessian, and slow down solver convergence. In contrast, the

−2.0 0.0 2.0

−2

0

2

I4

ΨAStVK

(a) Energy plot, ΨAStVK

−2.0 0.0 2.0
−1

0

1
I4

∂ΨAStVK
∂F

(b) PK1 of ΨAStVK, in the fiber direction

Figure 8.10.: Behavior of the ΨAStVK model, under stretching and compression.

ASqrt model shows a nearly-linear response in Fig. 8.11. The forces won’t grow too large,
even if you stretch your objects out really far. The conditioning of the global Hessian
will get worse under large stretches, but again, not too quickly. Unfortunately, there is
the distressing issue that the energy plot has a kink (Fig. 8.11 (a)) which then makes the
force response discontinuous (Fig. 8.11 (b)).

Things are actually worse than that. The PK1 plot for ASqrt contains two roots, at 1
and -1, which means that both are stable states for the energy. If the element is perfectly
inverted, i.e. the rest state experiences a perfect reflection in the fiber direction, then the
energy will think it is at the rest state, and exert no force.

8We could argue about whether the zero should overwhelm the infinity in the limit, but I don’t see a
practical reason to.
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−2.0 0.0 2.0
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I4

ΨASqrt

(a) Energy plot, ΨASqrt

−2.0 0.0 2.0

−2

0

2

I4

∂ΨASqrt
∂F

(b) PK1 of ΨASqrt, in the fiber direction

Figure 8.11.: Behavior of the ΨASqrt model, under stretching and compression.

This is the danger of using I5 instead of I4: it can’t tell the difference between a deformation
of 1 (zero deformation) and -1 (perfect reflection) in the fiber direction. So the question
is: can we build an anisotropic energy that has all the nice linear-looking properties of
ASqrt, but doesn’t have the discontinuity issues and spurious stable states?

8.4.2 An Anisotropic ARAP Model

The following energy accomplishes both of these goals:

ΨAA =
µ

2

(√
I5 − S(I4)

)2
. (8.31)

The plots for this new energy is given in Fig. 8.12. It gives a nice, kink-free parabola for
the energy, and the PK1 resolves to just a line. In essence, we patched everything to the

−2.0 0.0 2.0

−2

0

2

I4

ΨAA

(a) Energy plot, ΨAARAP

−2.0 0.0 2.0

−2

0

2

I4

∂ΨAARAP
∂F

(b) PK1 of ΨAARAP, in the fiber direction

Figure 8.12.: Behavior of our ΨAARAP model, under stretching and compression.

left of I4 = 0 to give us the result we wanted. The only remaining issue is that at I4 = 0,
the Dirac delta will produce an an infinity.

Fortunately, by just looking at the plots, we can see that this isn’t your usual catastrophic
singularity that starts exploding towards infinity if you’re anywherenear its neighborhood.
It’s a point singularity that generates a bad value in one specific case, but as long as you
don’t step directly on it, you’re just fine.
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A straightforward patch suggests itself almost immediately. For ΨAARAP, patching in the
value of ΨAARAP(2) whenever we hit the case of ΨAARAP(0) should work just fine. For
the PK1, if you ever get unlucky and hit ΨAARAP(0)

∂F dead-on, then replace the infinity with
−ΨAARAP(2)

∂F . The smooth, linear response will then be maintained.

The PK1 of this energy is:

∂ΨAARAP
∂F

= µ
(√

I5 − S(I4)
)[∂√I5

∂F
− ∂S(I4)

∂F

]

= µ
(√

I5 − S(I4)
)[ 1

2
√
I5
FaaT − δ(I4)

∂I4

∂F

]
,

(8.32)

but if use the fact that δ(I4)∂I4∂F = 0 almost everywhere, this simplifies to

∂ΨAARAP
∂F

=
µ

2

(
1− S(I4)√

I5

)
FaaT . (8.33)

Taking this expression forward, the Hessian is then,

∂2ΨAA
∂f

= µ

(1− S(I4)√
I5

)
H5 + 2

S(I4)

I
3/2
5

g5g
T
5

 , (8.34)

where, identical to the IVC case,

g5 = vec

(
∂I5

∂F

)
= vec

(
2FaaT

)
(8.35)

H5 = vec

(
∂2I5

∂F2

)
= 2aaT ⊗ I. (8.36)

If we treat S(I4) as a constant, we can push everything through the code in Figs. 8.5 and
8.6 to obtain the eigenvalues

λ0 = µ (8.37)

λ1,2 = µ

(
1− S(I4)√

I5

)
. (8.38)

Building a semi-positive definite Hessian is then a matter of checking if λ1,2 < 0.
If they are, we only need to build a rank-one matrix using λ0 and the eigenmatrix
Q0 = 1/

√
I5FaaT .

8.4.3 What Other Models Are Out There?

We’ve only looking at one possible anisotropic model that uses the new I4 invariant. We
found that I4 possesses some difficult properties, so we tried to keep the good while
discarding the bad. If you can think of a better one, that’s great. Publish it as a paper,
post the code publicly, or use it as the secret sauce in your proprietary simulator9.

9Bear in mind that whenever I hear “mine’s better, but it’s a secret” I usually don’t start wondering
what the secret is. I start wondering whether the speaker is a dummy, a liar, or both.
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Chapter 9

Tips for Computing and Debugging Force
Derivatives

Computing the second derivative of our deformation gradient is necessary if we want to
implement stable implicit integration methods. Hand rolling the individual terms can be
a daunting task. Over the years, I’ve picked up a few tricks that I thought I’d share. In
the presentation I said this wasn’t going to be covered in the notes, but I now have the
time. I also want to illustrate that I can’t be trusted and that you should forever remain a
healthy skeptic of the things I say.

Let’s imagine we have one of our constitutive models on an element defined over four
particles. We’ve taken the derivative of the deformation gradient F to compute the forces
that act on the particles. Taking the derivatives of these forces, denoted f , with respect to
their positions xi yields the 12× 12 Jacobian shown in figure 9.1.

∂f0
∂x0

∂f0
∂x1

∂f0
∂x2

∂f0
∂x3

∂f1
∂x0

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x0

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x0

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

Figure 9.1.: An example 12× 12 force Jacobian matrix composed of 3× 3 blocks

If you don’t take the "Tensor-Way" to derive the force Jacobian matrix and instead decide
to crank these terms by hand, there are some tricks one can play to reduce the effort. The
Jacobian is symmetric, so we only need to compute the upper-triangular blocks and only
the upper-triangular portion of the diagonal blocks are needed. To save us even more
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effort we should remember the property that our forces must sum to zero.
3∑
i=0

fi = 0

This means that the column blocks of our Jacobian should sum to a 3× 3 matrix of zeros.
Again because of our symmetry property, this means that the row blocks should also
sum to a zero matrix.1 One can use this property to check your work for errors. There
will likely be some numerical round-off accumulation, so things won’t exactly be zero,
but if you make a mistake it will likely fail this property in an obvious way.

What else can we do with this knowledge? Well if we have the off-diagonal blocks of our
first row, we can compute ∂f0

∂x0
them them as follows:

∂f0
∂x0

= −
[
∂f0
∂x1

+
∂f0
∂x2

+
∂f0
∂x3

]
Then let’s imagine that ∂f1

∂x2
is has particularly nasty derivatives to perform, but that we

have ∂f1
∂x1

and ∂f1
∂x3

along with the top row of blocks. We can compute ∂f1
∂x2

in a similar
fashion:

∂f1
∂x2

= −
[
∂f0
∂x1

T

+
∂f1
∂x1

+
∂f1
∂x3

]
I’ve found that these properties are also a handy debugging tool. We can play similar
games with other terms as we work our way down the matrix rows to reduce the amount
of work needed by any hand derivations or code implementation. Even if you don’t crank
the entries of these block terms by hand and go the "Tensor-Way" of Chapter 4, you might
want to take advantage of our Jacobian properties in another way. Numerical round-off
accumulation may result in forces that don’t exactly sum to zero and a force Jacobian that
is not numerically symmetric. Restoring the property to the forces is straightforward.

f0 = −
[
f1 + f2 + f3

]
For the force Jacobian blocks we can take a different approach. One can average the
off-diagonal blocks and assign the average back to the strictly upper-diagonal block,
i < j.

∂fi
∂xj

=
1

2

[
∂fi
∂xj

+
∂fj
∂xi

T]
One then assigns the transpose of this average to the strictly lower-diagonal block, j > i

∂fj
∂xi

=
∂fi
∂xj

T

1Thanks to Tim Haynes for showing me this property many years ago at Disney’s Secret Lab.
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The diagonal blocks are then defined by the negative sum of the off-diagonal terms in
the row.

∂fi
∂xi

= −
i!=j∑
j

∂fi
∂xj

This will make the Jacobian symmetric. The rows and columns won’t sum exactly to zero,
but the error is usually reduced. This process is not required for things to work properly
in a simulator. However, it can be handy in debugging for the force Jacobian to better
reflect the properties that we know it should possess.

9.1 A Warning To Non-Cabal Members
Let’s imagine you’ve derived all the necessary terms for the force Jacobian, verified them
with a symbolic math program and then verified you have made absolutely no errors
transforming the expressions into code. That is quite an achievement, but unfortunately
you have fallen into a trap that has been known by a secret cabal of physics programmers
for some time.2 The right math is wrong! What does that mean? It simply means that the
force Jacobian can become indefinite which will likely cause your simulator a problems.
In some cases the force Jacobian will be indefinite, but other terms will mask it in the
global matrix and you’ll be blissfully unware. Other times it will lead to simulation
artifacts or your linear system solver failing to converge.

So what can one do? Well, if you go through the rigor of computing the analytic
eigensystem as presented in Chapter 7, you don’t need to worry. That work pays off
and allows one to precisely avoid the force Jacobian from becoming indefinite. If you
cranked the individual terms by hand though, you have probably taken a brute-force
approach that does not allow for this analysis. In that case you will need to perform
some experiments and make some ad-hoc adjustments to the math.3 I recommend that
anyone writing a simulator, that uses the force Jacobian, have a mode that performs an
eigendecompostion of it at the element level. Have this capability for all the instances
of an implicit force in your simulator! This will help detect these issues and to help to
analyze where and when they occur. For the cloth forces in Baraff and Witkin (1998),
they occur only in the second term of the equation below from their paper, below:4

∂fi
∂xj

= −k
[
∂C

∂xi

∂C

∂xj

T

+
∂2C

∂xi∂xj

]

2The first rule of the cabal is to always give credit where credit is due. This is something I had to painfully
discover on my own, but over time I learned others had solved discovered this before me. Unfortunately
that means I cannot properly uphold the first rule. I hope that I am not banished or worse.

3This is the approach taken with the cloth forces in Pixar’s simulator Fizt.
4One should be perform the eigendecomposition with respect to the final sign of the Jacobian term

from the left hand side that will need to be inverted.
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Sometimes the the second term can be completely omitted. Other times it is necessary to
identify the deformation conditions lead to indefiniteness and only discard it then. This
was illustrated for the case of a simple linear spring in Choi and Ko (2002). Even when
such ad-hoc approaches are employed, the properties of the force Jacobian from before
must still hold with respect to the row and column block sums. Besides the effort of
deriving the force Jacobian, I suspect the indefiniteness pitfall has lead to many abandon
their implementation of Baraff and Witkin (1998) and pivot to either Position Based
Dynamics, (PBD), or Extended PBD which do not require the force Jacobian. Since we
have lifted the mask on this problem, we will move on to derive the forces and their
gradients required to model cloth/thin shells in chapter 10.
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Chapter 10

Thin Shell Forces

In this chapter we will derive the forces and derivatives needed to simulate stiff thin
shells and cloth. To model cloth/thin shell behavior we need to describe forces models
that resist changes to the stretching, shearing and bending modes of deformation. In this
chapter we will follow the formulation and notation in Baraff and Witkin (1998) which
differs from the tensor formulation we saw earlier1. The thin shell model discussed here
is certainly not comprehensive. Many other models certainly exist and may have other
features to offer.

10.1 Handy derivatives of a few vector operators
Before starting our derivations for the different cloth energy functions, forces and their
gradients we present some identities which will prove useful later in our discussion.

10.1.1 Jacobian of a unit vector

Let’s define the column vector xij = pj − pi and x̂ij =
xij
‖xij‖ .

∂x̂ij
∂pk

=
1

‖xij‖

[
I −

xijx
T
ij

‖xij‖2

]
∂xij
∂pk

(10.1)

The resulting operator projects out any components of a vector in the direction of x̂ij
and scales the components orthogonal to x̂ij by 1

‖xij‖
∂xij
∂pk

.

1If you really enjoy computing force derivatives and ever find yourself needing to name a child, I suggest
Jacob for the first name, and Ian for the middle name. If you really want to commit, you can also change your
last name to Matrix. If that sounds like an improbable last name, just remember John and Jenny Matrix, the
Arnold Schwarzenegger and Alyssa Milano characters from Commando (1985).
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10.1.2 The derivative of the dot product of two vectors

Define the scalar α = xT y where x and y are vector functions of the column vector pk.

∂α

∂pk
=

[
∂x

pk

]T
y +

[
∂y

pk

]T
x (10.2)

10.1.3 Jacobian of the cross product of two vectors

Define cross product vector z = x × y where x and y are vector functions of column
vector pk

∂z

∂pk
=

[
x×

∂y

∂pk
− y× ∂x

∂pk

]
(10.3)

Here the operator × means the skew-symmetric matrix that is the cross product operator.
For a vector v,

v× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (10.4)

10.1.4 Energy Functions, Forces and their Jacobians

Baraff and Witkin (1998) define an energy function E for each mode of deformation with
a stiffness factor˛s to control how strong the resulting force is that resists the deformation.
The constraint function C(p) is a function of the current dynamic particle position state
xwhich designed to be zero when there is no deformation in the given mode.

E =
ks
2
C(p)TC(p) (10.5)

The restoring force acts opposite the gradient of E and using equation (10.2) is given by
(10.6).

fi = −ks
∂C(p)

∂pi

T

C(p) (10.6)

Our next chapter on implicit integration techniques will reveal that we also require
second positional derivative of E given by equation (10.7). This a the source of many
pain for many people trying to implement Baraff and Witkin (1998), but done correctly it
is worth the effort and in the next section, I’ll do all of the heavy lifting for you.

∂fi
∂pj

= −ks
[
∂C(p)

∂pi

∂C(p)

∂pj

T

+
∂2C(p)

∂pi∂pj

]
(10.7)
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10.2 Stretch
We are going to assume that our thin shell surface is discretized into triangles. Each
triangle vertex/particle has material space coordinates which describe its planar rest
shape 2. Since cloth is cut from bolts of fabric with inherent warp and weft directions, it
makes sense to define the material coordinates in 2D uv coordinates.

Given a triangle with vertices pi, pj and pk, define the column vectors ∆p1 = pj − pi
and ∆p2 = pk − pi. We then define ∆u1 = uj − ui, ∆u2 = uk − ui, ∆v1 = vj − vi and
∆v2 = vk − vi.

We then define a linear mapping function from material space to world space [wu,wv] in
equation (10.8).

[
wu wv

]
=

[
∆p1 ∆p2

][
∆u1 ∆u2

∆v1 ∆v2

]−1

(10.8)

The lengths ‖wu‖ and ‖wv‖ are unity when no stretching has occurred in the respective
material space direction. This gives us what we need to define our function C(x) for
stretch shown in equation 10.93.

C(p) =

[
‖wu‖ - 1
‖wv‖ - 1

]
(10.9)

Our stretch energy term is given by (10.10), where ks is the material stiffness and auv is
the area of the triangle in material space.

Estretch = auv
ks
2
C(p)

TC(p) (10.10)

To compute the restoring force, we are going to need to take the derivative of C with
respect to the vertex positions p. We can safely ignore the constant factor because its
derivative is zero.

∂C(p)

∂pi
=

∂‖wu‖∂pix

∂‖wu‖
∂piy

∂c
∂piz

∂‖wv‖
∂pix

∂‖wv‖
∂piy

∂‖wv‖
∂piz

 (10.11)

We can express ‖wu‖ = (w2
ux + w2

uy + w2
uz)

1
2 . To take the derivative with respect to a

component c of vertex position pn, we apply the chain rule to obtain equation (10.12). So
2It is important to realize that the representation in material space includes the size of the triangle as

well.
3In Baraff and Witkin (1998), they define this equation with an area term. This does not result in the

proper resolution independent material behavior. Instead we will factor in the area term in the energy
function.
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it seems like we only need the partials of wu with respect to our positions now. The same
pattern naturally holds true for ∂‖wv‖∂pnc

.

∂‖wu‖
∂pnc

=
1

‖wu‖

[
wux

∂wux
pnc

+ wuy
∂wuy
pnc

+ wuz
∂wux
pnc

]
(10.12)

Let’s return back to equation (10.8) and simplify for the terms of wu and wv. The inverse
of our material matrix is (10.13).

[
∆u1 ∆u2

∆v1 ∆v2

]−1

=
1

∆u1∆v2 −∆u2∆v1

[
∆v2 −∆u2

−∆v1 ∆u1

]
(10.13)

Multiplying our position vectors ∆p1 and ∆p2 through we get the forms in (10.14) and
(10.15).

wu =
1

∆u1∆v2 −∆u2∆v1

∆p1x∆v2 −∆p2x∆v1

∆p1y∆v2 −∆p2y∆v1

∆p1z∆v2 −∆p2z∆v1

 (10.14)

wv =
1

∆u1∆v2 −∆u2∆v1

∆p2x∆u1 −∆p1x∆u2

∆p2y∆u1 −∆p1y∆u2

∆p2z∆u1 −∆p1z∆u2

 (10.15)

Examining (10.12) with (10.14) in hand, we can see that only terms inside the brackets
that belong to component cwill be nonzero. If you are getting tired, there’s even more
good news! For a fixed pn the scalar value of the derivatives of ∂wu

∂pnc
for all components c

are the same ∂wux
∂pix

=
∂wuy
∂piy

= ∂wuz
∂piz

Below are the derivatives of wu and wv wrt. positions pi and pj .

∂wu
∂pi

=
vj − vk

∆u1∆v2 −∆u2∆v1
(10.16)

∂wv
∂pi

=
uk − uj

∆u1∆v2 −∆u2∆v1
(10.17)

∂wu
∂pj

=
vk − vi

∆u1∆v2 −∆u2∆v1
(10.18)

∂wv
∂pj

=
ui − uk

∆u1∆v2 −∆u2∆v1
(10.19)
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∂wu
∂pk

=
vi − vj

∆u1∆v2 −∆u2∆v1
(10.20)

∂wv
∂pk

=
uj − ui

∆u1∆v2 −∆u2∆v1
(10.21)

We can now write our first derivatives of the constraint function C wrt. pi and pj , but we
will keep the partials separate wrt. the functions in the u and v directions. Why this is a
good idea will become apparent shortly. Below ŵu and ŵv represent the unit vectors of
wu and wv.

∂Cu
∂pi

=
∂wu
∂pi

ŵu
∂Cv
∂pi

=
∂wv
∂pi

ŵv

∂Cu
∂pj

=
∂wu
∂pj

ŵu
∂Cv
∂pj

=
∂wv
∂pj

ŵv

∂Cu
∂pk

=
∂wu
∂pk

ŵu
∂Cv
∂pk

=
∂wv
∂pk

ŵv

The partial derivatives wrt. pk could also be computed by the negative of the sum of the
partials wrt. pi and pj , but we’ve included the partial wrt. pk for completeness.

If we provide different stiffness values ksu and ksv the stretch model allows for the
modeling of anisotropic behavior in the u an v directions. The restoring force on particle
pn would be given by equation (10.22) where Cu = ‖wu‖ − 1 and Cv = ‖wv‖ − 1.

fn = −auv
[
ksu

∂Cu
∂pn

Cu + ksv
∂Cv
∂pn

Cv

]
(10.22)

Keeping the terms separate for handling anisotropy is convenient, but there’s another
more important reason to do this. We have yet to compute the terms necessary for the
second term of the force Jacobian in equation (10.7). The term itself is not as intimidating
as one might initially think, but it can be a source of pain and agony. Under compression
this term can cause the full Jacobian to go indefinite. This can manifest as odd simulation
behavior and poor convergence of the linear system discussed as we mentioned in
chapter 9. Fortunately by examining Cu and Cv we can see if the triangle element is in
compression in the respective direction and if is, we simply omit the corresponding
∂2C
∂pi∂pj

term. Let’s assume that our triangle element is stretching and proceed to compute
the necessary terms.

Given the form of ∂Cu∂pn
we can easily compute the second derivative terms by using the

identity in (10.1) to arrive at equation (10.23). These 3x3 blockmatrix terms are symmetric
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which can be exploited for more efficient computation. The second partial of wv follows
the obvious pattern.

∂2Cu
∂pi∂pj

=
∂wu
∂pi

∂wu
∂pj

1

‖wu‖

[
I − ŵuŵTu

]
(10.23)

The full stretch force Jacobian can be written as a sum of the terms of the partials wrt. Cu
and Cv.

∂fi
∂pj

= −auv ∗
[
ksu

∂Cu
∂pi

∂Cu
∂pj

T

+ ksv
∂Cv
∂pi

∂Cv
∂pj

T

+ ksu
∂2Cu
∂pi∂pj

Cu + ksv
∂2Cv
∂pi∂pj

Cv

]
(10.24)

We remind the reader that it isn’t necessary to compute all of the 3x3 Jacobian blocks.
The Jacobian is symmetric, so only the upper or lower triangular blocks are needed 4.
Also, because our internal forces must sum to zero, the same is true for the rows and
columns of the force Jacobian. Therefore the 3x3 blocks must sum to zero horizontally
and vertically. Only three of the six upper triangular blocks need to be computed and
the rest can be obtained from them.

10.2.1 Stretch Damping

Damping forces act opposite the direct of the restoring force and are proportional to the
velocity. We define a damping factor k̃d which is a material parameter that is scaled by
auv. Following the formulation in Baraff andWitkin (1998) we define the stretch damping
force on particle pi by equation (10.25). Ċu =

∑2
n=0

∂Cu
∂pn
· vn where vn is the velocity of

triangle particle pn.

fdi = −k̃d
[
∂Cu
∂pi

Ċu +
∂Cv
∂pi

Ċv

]
(10.25)

The corresponding velocity gradient of the damping force on particle i wrt. vj is in
equation (10.26).

∂fdi
∂vj

= −k̃d
[
∂Cu
∂pi

∂Cu
∂pj

T

+
∂Cv
∂pi

∂Cv
∂pj

T]
(10.26)

In Baraff andWitkin (1998) there’s discussion of the spatial gradient of the damping force
in equation (10.27). The authors discard the outer product terms because they break the
symmetry of the linear system required by the conjugate gradient method they use to
solve the sparse linear system needed for implicit integration. The authors also give an

4In Fizt we favor the upper triangular blocks.
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omnious warning about excluding the second partial term. In Fizt this term exists, but I
am skeptical of its importance5.

∂fdi
∂pj

= −k̃d
[
∂Cu
∂pi

∂Ċu
∂pj

T

+
∂Cv
∂pi

∂Ċv
∂pj

T

+
∂2Cu
∂pi∂pj

Ċu +
∂2Cu
∂pi∂pj

Ċv

]
(10.27)

With the formulas in hand one can compute the stretch forces and their Jacobians
necessary for implicit integration. Deriving things in the fashion we have done here can
seem tedious, but the knowledge we gain from doing so enables us to write very efficient
code.

In Kim (2020) an alternate finite element tensor based formulation of the Baraff-Witkin
stretch model is provided. Instead of discarding the second partial under compression,
an analytic eigenanalysis is performed to guarantee the Jacobian remains positive
semidefinite 6.

10.3 Shear
Our vectors wu and wv from our stretch formulation remain orthogonal if the triangle
has no shearing deformation in world space. In Baraff and Witkin (1998), the energy
function presented for shear does not use the unit vectors, which we see as a mistake.
In Fizt even this formulation is not used. Instead a polar-spring formulation is used
to measure the angle between wu and wv, with the rest angle being 90°. Here we will
present an alternative formulation that has served the authors well elsewhere.

We define the shear constraint function as C(p) = ŵu · ŵv. We can use equations (10.2)
and (10.1) to derive ∂C(p)

∂pn
for each of the triangle particles.

∂C(p)

∂pi
=

1

‖wu‖
∂wu
∂pi

[
I − ŵuŵTu

]T
ŵv +

1

‖wv‖
∂wv
∂pi

[
I − ŵvŵTv

]T
ŵu (10.28)

Let’s examine equation (10.28) in a bit more detail. The matrix inside is symmetric so
we can drop the outside transpose. The matrix inside is a projection that removes any
component of the vector on the right hand side in the direction of the vector inside the

matrix term.
[
I − v̂1v̂

T
1

]
v2 removes any component of v2 in the v̂1 direction. There’s

no need to assemble the matrices in (10.28). The same operation can be performed by
v2− (v2 · v̂1)v̂1. Let’s define the operator projout(v,u) which projects out any component
of v in the unit vector u direction. We can then simplify (10.28) to the form in (10.29).

5In a different simulator this term was ignored and things worked just fine. Whether they work "better"
with the term is now an itch I will need to scratch sometime.

6When time permits, I’d like to run a behavior comparison between the analytical eigenanalysis and
ad-hoc discarding of the entire second partial for the stretch Jacobian. It would also be interesting to see
which formulation results in faster code.
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∂C(p)

∂pi
=

1

‖wu‖
∂wu
∂pi

projout(ŵv, ŵu) +
1

‖wv‖
∂wv
∂pi

projout(ŵu, ŵv) (10.29)

The same pattern holds for ∂C(p)
∂pj

and ∂C(p)
∂pk

and they only differ by the scaling terms ∂wu
∂pn

and ∂wu
∂pn

leading to efficient evaluation.

With ∂C(p)
∂pi

, ∂C(p)
∂pj

, ∂C(p)
∂pk

in handwe can compute the shear restoring force for each particle
and the outer product term of equation (10.7) for the positional Jacobian blocks we need.
Given the form of (10.28), computing the second partial doesn’t seem very appealing.
Differentiating a matrix wrt. a vector will result in a 3x3x3 tensor. Differentiating wrt.
(10.29) seems more appealing, but before we embark on that, let’s ask ourselves if it is
necessary or even a good idea. It turns out that when there is shearing deformation that
the matrix of second partials is always indefinite and for stable implicit integration the
second partial isn’t required. If we computed the full Jacobian, one option would be to
perform an eigendecompostion, clamp any negative eigenvalues to zero and compute
the clamped Jacobian from the eigenvectors and clamped eigenvalues. This would
not be cheap and performance matters, so we punt on computing the second partial
since it is more trouble than it is worth. If you want to add the second partial to your
implementation, the second partial for the original Baraff-Witkin shear energy function
is provided in Pritchard (2002).

10.3.1 Shear Damping

The formulation of shear damping parallels the one for stretch except for the omission of
the second partial term contribution to the positional Jacobian. In practice I have not
seen any artifacts from omitting this term. Pseudocode for implementing the stretch

Figure 10.1.: The stretch and shear model from this chapter applied to five sheets of
cloth hanging under gravity at different resolutions with the same material
parameters.

and shear forces and their Jacobians is provided in the Appendix G. The pseudocode is
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written for readability and can be improved for performance7.

As shown in Fig. 10.1, the stretch and shear model presented in this chapter provides
fairly mesh resolution independent behavior8. In the author’s experience one does not
obtain this resolution invariant behavior in solvers based on position based dynamics9.

In this example, density = 0.06 g/cm2,KStretchU = KStretchV = 4E5,KShear = 5E4,
KBend = 1E5. Each sheet is 50cm wide and 100cm tall.

10.4 Dihedral Bend
Thin shell bending forces play an important role in defining the material behavior of
a cloth model. The Jacobian of the bending force can be a formidable adversary. Here
we present the bending model currently in use in Fizt. Our formulation makes no
assumptions about material inextensibility such as Garg et al. (2007) and Bergou et al.
(2002). We will derive the bending forces and an approximate to the force Jacobian
capable of simulating a materials ranging from satin to sheet metal10. The formulation
presented was derived separately, but seems to parallel the derivation found in Pritchard
(2002). It has been reduced to a much more compact form which leads to a very efficient
implementation. 11

Figure 10.2.: Our four particle configuration for our dihedral edge e12.

Our energy function for bending is given by equation (10.30), where θ is the current
7The performance of the routine isn’t particularly bad either.
8This behavior is also dependent on assigning particle masses as a function of density and the one third

of the area in material space of the incident faces.
9This can still occur in XPBD solvers, but then this is primarily due to the implementations requiring

the user to specify the number of constraint iterations to run each time step, instead of solving a global
system to a reasonable degree of convergence

10If one has a very high bending stiffness it is important to have stretch and shear forces of similar
magnitude. If a face inverts the high bend stiffness will result in a large torque and nasty artifacts such as
the mesh eating itself.

11At the time of submission and presentation, there were some gross errors in this section and the
associated pseudo-code. The mistakes have now been corrected. Apologies, Dave Eberle.
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dihedral angle and θr is the rest angle. Here, k̃s represents the material stiffness as well
as a scaling term for the energy that aims to provide mesh resolution independent
behavior. A discussion of this term is found in Grinspun et al. (2003). In the case of cloth,
θr is usually zero, but can me made non-zero to model pleats and permanent folds in a
material.

E =
k̃s
2

(θ − θr)2 (10.30)

Following the derivation of the force in Baraff and Witkin (1998), the force is given by:

fks = −k̃s
∂θ

∂pk
(θ − θr) (10.31)

Given the unit normals and the edge direction we can compute θ.

sin(θ) = (n̂0 × n̂1) · ê (10.32)

cos(θ) = (n̂0 · n̂1) (10.33)

Using tan(θ) = sin(θ)
cos(θ) we write θ as equation (10.34).

θ = arctan(tan(θ)) (10.34)

Taking the derivative with respect to pk yields:

∂θ

∂pk
=
∂arctan(tan(θ))

∂pk
(10.35)

Taking the derivative of of left hand side of equation (10.35) with respect to pk yields:

∂θ

∂pk
=

1

1 + tan2(θ)

∂tan(θ)

∂pk
(10.36)

Using the quotient rule we can write ∂tanθ
∂pk

as equation (10.35).

∂tanθ

∂pk
=

∂sin(θ)
∂pk

cos(θ)− sin(θ)∂cosθ∂pk

cos2(θ)
(10.37)

Using equation (10.37) and substituting 1 + tan2(θ) with sec2(θ), equation (10.35)
simplifies to (10.38).

∂θ

∂pk
=
∂sin(θ)

∂pk
cos(θ)− sin(θ)

∂cos(θ)

∂pk
(10.38)
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10.4.1 Derivatives of sin(θ) and cos(θ)

We can use the vector operation Jacobians from the beginning of this chapter to determine
the Jacobians of our trigonometric functions.

∂sin(θ)

∂pk
=

[
n̂×0

∂n̂1

∂pk
− n̂×1

∂n̂0

∂pk

]T
ê+

[
∂ê

∂pk

]T
(n̂0 × n̂1) (10.39)

Remembering that our unit vector Jacobian projects out any components in the direction,
positive and negative, in the direction of the unit vector we can safely ignore the the term[
∂ê
∂pk

]T
(n̂0 × n̂1), because it will always be zero.

∂sin(θ)

∂pk
=

[
n̂×0

∂n̂1

∂pk
− n̂×1

∂n̂0

∂pk

]T
ê (10.40)

∂cos(θ)

∂pk
=

[
∂n̂0

∂pk

]T
n̂1 +

[
∂n̂1

∂pk

]T
n̂0 (10.41)

Using our hinge example in Figure 10.2 for reference we can express things in terms of
vectors from our particle positions.

p01 = p1 − p0 p02 = p2 − p0 (10.42)
p32 = p2 − p3 p31 = p1 − p3 (10.43)
n0 = p01 × p02 n1 = p32 × p31 e = p2 − p1 (10.44)

The normal vectors are the result of the cross product operator. While one can certainly
use equation 10.3 to obtain ∂n

∂pk
for n0 and n1, we derived the following quantities

component-wise from the components of the cross products below. Assuming a CCW
normal orientation, the skew-symmetric matrices are formed from the edge vector
around the triangle opposite the vertex we are differentiating with respect to.

∂n0

∂p0
= e×

∂n0

∂p1
= −p02×

∂n0

∂p2
= p01× (10.45)

∂n1

∂p3
= −e× ∂n1

∂p1
= p32×

∂n1

∂p2
= −p31× (10.46)

Given the Jacobians of the normal vectors as skew cross product operators, we can also
use equation 10.1 to compute the derivatives of our normalized normal vectors.

∂n̂i
∂pk

=
1

‖ni‖

[
I − n̂in̂Ti

]
∂ni
∂pk

(10.47)
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10.4.2 Approximating the force Jacobian

Following the notation of Baraff and Witkin (1998) if C(p) = θ then

∂fi
∂pj

= −k̃
[
∂θ

∂pi

∂θ

∂pj

T

+
∂2θ

∂pi∂pj
θ

]
(10.48)

Referring to equation 10.38, we currently only have the means to compute the outer
product term of equation 10.48. The Hessian term requires significantly more effort and
has the potential to make the Jacobian indefinite. The good news is that for practical
applications, that only the first term is needed. It is sufficient for stable implicit integration
of materials with a wide range of material stiffness1213.

10.4.3 Bend Damping

We define the damping force according to Baraff and Witkin (1998). Here k̃d is the
damping factor which also includes the same scaling term found in k̃s.

fkd = −k̃d
∂θ

∂pk
θ̇ (10.49)

θ̇ =
3∑
i=0

∂θ

∂pk

T

vi (10.50)

The corresponding damping Jacobian 3× 3 block is ∂fi
∂vj

= −k̃d ∂θ∂pi
∂θ
∂pj

T

10.4.4 Implementation Details

Many of the terms required can be computed once an stored on the faces of the mesh.
With a little bookkeeping the terms for a given dihedral edge can be accessed. A similar
strategy is discussed in Tamstorf and Grinspun (2013) where an alternative energy
function is used and the full Jacobian for it is provided.

A closer inspection of our operators reveals that the additional complexity of such
bookkeeping may not be warranted. Using (A − B)Tx = ATx − BTx and (ABC)T =

CTBTAT , the implementationof equation 10.40 canbe simplified. LetABC = n̂×0
1
‖n1‖

[
I−

n̂1n̂
T
1

]
∂n1
∂pk

. Then transpose of our skew symmetric matrices on each end are merely

12One may wonder what physical behavior we have given up by discarding the Hessian term. It would
be interesting first see if it offers anything using numerical clamping to guarantee positive semidefiniteness.
Before going through the considerable effort of computing the Hessian manually for such an experiment, I
suggest generating code with a symbolic package.(See next footnote.)

13Prof. Kim here. I actually did derive this manually, and it turns out that it’s quite similar to the triangle
normal Hessians in Appendix I. It’s still too preliminary for inclusion here or in the HOBAK code, but if you
derive it yourself and think “Hey, it’s real similar to the collision stuff”, I can confirm that you’re not wrong.
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negations that cancel each other out and our projection matrix represented by B is
symmetric. As a result we can express 10.40 as equation 10.51.

∂sin(θ)

∂pk
=

[
1

‖n1‖
∂n1

∂pk

[
I − n̂1n̂

T
1

]
n̂×0 −

1

‖n0‖
∂n0

∂pk

[
I − n̂0n̂

T
0

]
n̂×1

]
ê (10.51)

This rearranged form provides an efficient way to compute ∂sin(θ)
∂pk

with a reduced

number vector operations than the original form. Let proj(v1, v̂2) =

[
I − v̂2v̂

T
2

]
v1 which

is equivalent to v1 − (v1·)v̂2)v̂2. We can rewrite 10.51 as 10.52 and see that we can
compute the two projections of n̂0 × ê and n̂1 × ê once and then use the results across
the computation of all the ∂sin(θ)

∂pk
terms.

∂sin(θ)

∂pk
=

1

‖n1‖
∂n1

∂pk
proj(n̂0 × ê, n̂1)− 1

‖n0‖
∂n0

∂pk
proj(n̂1 × ê, n̂0) (10.52)

The effect of the skew symmetric matrices on both sides can be implemented as cross
products. Some care must be taken nest the operations properly. We can also greatly
simplify equation 10.41 with a similar manipulation of the transpose and replacing the
matrix with our vector projection. In this case the transpose of the skew symmetric
matrix is handled by negation. We can write equation 10.53 and see that it too can be
compactly reduced to some vector operations. The computation of ∂cos(θ)∂pk

and ∂sin(θ)
∂pk

with vector operations is illustrated in the pseudocode found in Appendix H.

∂cos(θ)

∂pk
=
−1

‖n0‖
∂n0

∂pk
proj(n̂1, n̂0) +

−1

‖n1‖
∂n1

∂pk
proj(n̂0, n̂1) (10.53)
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Chapter 11

Implicit Integration Methods

11.1 Backward Differentiation Methods in Fizt
Robust deformation simulations require stable numerical integration techniques for
systems of stiff ordinary differential equations (ODEs). The subject of numerical integra-
tion techniques is vast, but in this section we will focus on the backward differentiation
formula (BDF) methods used in Pixar’s Fizt.

The general s-order BDF formula with time step h of the state y is given by:

s∑
i=0

akyn+k = hβf(tn+s, yn+s) (11.1)

The coefficients ak and β are then chosen to achieve order s 1.

Given state of our system at tn is yn = (xn, vn), we can write the first-order (BDF-1) form
of our system as: [

xn+1 − xn
vn+1 − vn

]
= h

[
vn+1

M−1f(xn+1,vn+1)

]
(11.2)

A reader new to implicit integration might be alarmed by equation (11.2) since its intent
is to determine the new state yn+1 = (xn+1,vn+1), but our forces f on the right hand
side are also being evaluated at this unknown future state. Here is where all the hard
work of computing the Jacobians of our forces pays off. We approximate fn(xn+1,vn+1)
with a first-order Taylor series approximation:

f(xn+1,vn+1) ≈ f(xn,vn) +
∂f

∂x
∆x +

∂f

∂v
∆v (11.3)

1This is done through the use of the Lagrange interpolation polynomial for the points
(tn, yn)...(tn+s, yn+s)

139
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Using this approximation, we can rearrange the terms in equation (11.2) to write a single
equation to solve for either ∆x or ∆v. Let’s consider the case for ∆v first. Using our
Taylor approximation, we can write the second row of (11.2) as:

M∆v = h
[
f(xn,vn) + ∂f

∂x∆x + ∂f
∂v∆v

]
. (11.4)

Using the first row of (11.2), we can also write ∆x = h[vn + ∆v]. Substituting this into
(11.4) and grouping the ∆v terms to the left hand side, we arrive at:[

M− h ∂f∂v − h
2 ∂f
∂x

]
∆v = h

[
f + h ∂f∂xvn

]
. (11.5)

This is the same form used in Baraff and Witkin (1998), and is also known as the
Backward-Euler method.

In the next chapter, we will discuss how to efficiently form the linear system for ∆v.
Once ∆v is obtained, we use it to obtain vn+1 = vn + ∆v and update the position state
according to the first row of equation (11.2), xn+1 = xn + hvn+1.

Now let’s consider the case where we solve for ∆x. First we rearrange the top row of
(11.2) into

∆v =
1

h
(xn + ∆x− xn)− vn. (11.6)

Plugging (11.6) into the second row of (11.2) and using the first-order Taylor approxima-
tion of fn+1, we arrive at the system for ∆x:[

M− h ∂f∂v − h
2 ∂f
∂x

]
∆x = h2fn + h

[
M− h ∂f∂v

]
vn. (11.7)

These Backward-Euler (BDF-1) methods provide robust numerical integration in the
sense that your simulation won’t explode2. While Backward-Euler is stable with large
time steps h, it is still only a first-order accurate scheme. This impacts the quality of
secondary motion in the simulation, because Backward-Euler tends to bleed energy out
of the system. One solution is to decrease the time step h, but increasing the number of
builds and solves of (11.5) makes this a costly approach.

Fortunately, second-order BDF, also known as BDF-2, offers a more efficient solution
that only incurs the additional overhead of tracking the previous system state yn−1 =
(xn−1,vn−1). The second-order BDF form of our system is given by:[

3
2xn+1 − 2xn + 1

2xn−1
3
2vn+1 − 2vn + 1

2vn−1

]
= h

[
vn+1

M−1f(xn+1,vn+1)

]
. (11.8)

We first solve the top row of equation (11.8), for xn+1 to obtain:

xn+1 =
4

3
xn −

1

3
xn−1 +

2

3
h[vn + ∆v]. (11.9)

2This is true if your Jacobians are positive-semidefinite, but many linear system solvers are unable to
cope with linear systems that are not positive definite.
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We then rearrange (11.9) this further to solve for ∆x:

∆x =
1

3
[xn − xn−1] +

2

3
h[vn + ∆v]. (11.10)

Substituting (11.10) into our first-order Taylor approximation of fn+1, and then grouping
terms with ∆v to the left hand side, produces the linear system for the BDF-2 scheme:[
M− 2

3
h
∂f

∂v
− 4

9
h2 ∂f

∂x

]
∆v =

1

3
M

[
vn−vn−1

]
+

2

3
h

[
f(xn,vn)+

1

3

∂f

∂x

[
xn−xn−1+2hvn

]]
(11.11)

The terms on the right hand side are grouped to provide a single sparse matrix-
vector multiply against the terms of ∂f∂x . Once again, we then solve for ∆v and update
vn+1 = vn + ∆v. The position update follows similarly from the first row of (11.8):
xn+1 = 4

3xn −
1
3xn−1 + 2

3hvn+1.

If we instead want to solve for ∆x, we can rearrange the top row of (11.8) into ∆x =
1
h [3

2 − 2xn + 1
2xn−1]− vn. Substituting this into our first-order Taylor approximation and

pushing the ∆x terms from the bottom row of (11.8) to the left side yields the somewhat
lengthy:[
M−2

3
h
∂f

∂v
−4

9
h2 ∂f

∂x

]
∆x =

M

3

[
(xn−xn−1)+

1

3
h(8vn−2vn−1)

]
+

2

9
h

[
2hfn−

∂f

∂v

[
xn−xn−1+2hvn

]]
.

(11.12)

BDF-2 integration in terms of ∆v was deployed in Fizt for Pixar’s Coco and has been
the default integration scheme ever since. Taking 10 time steps per frame, with a frame
representing 1

24 of a second, produces enough quality for our secondary motion needs.

You might be wondering: if BDF-2 provides such a nice accuracy boost, why not go to
even higher-order? This is certainly possible, but could spell trouble, as higher-order
BDF methods unfortunately do not have the same stability guarantees. A nice discussion
of this can be found in Hauth and Etzmuss (2001). The presented BDF-2 forms also
assume a constant time step. If the time step changes, the coefficients are different, and
must be computed as a function of hcurr and hprev.3 More recently, higher-order implicit
integration through a diagonalized implicit Runge-Kutta has been explored by Löschner
et al. (2020).

Besides the accuracy and order of the implicit technique, other factors can affect the
quality of motion. If an iterative method is used to solve for ∆v, the accuracy of the
solution also has an impact. Since our Taylor approximation to f(xn+1,vn+1) was only
first- order accurate, we are making a linear approximation of our forces. To obtain a
more accurate solution, one can employ Newton-Raphson iteration, where each iteration
requires the assembly and solution of a new linear system. This strategy works well if
one wants to produce quality motion and only take one step per-frame. However, the
simple approach of using BDF-2, ten timesteps per frame, and a single Newton iteration
at each step, has served us well in practice.

3Details are in Hauth and Etzmuss (2001)
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Figure 11.1.: Two sheets of cloth from separate simulators are shown at their apex from
swinging under gravity. The BDF-2 result in purple retains more energy
and swings higher than Backward-Euler show in orange.

11.2 Time Integration in HOBAK

11.2.1 Velocity-Based BDF-1

Now let’s take a look at BDF-1 in the HOBAK code, in particular in

BACKWARD_EULER_VELOCITY::solveRayleighDamped.

The velocity-based BDF-1 problemAx = b is implemented as:
1 // assemble RHS from Eqn. 18 in [BW98]
2 _b = _dt * (R + _dt * K * _velocity + _externalForces);
3

4 // assemble system matrix A, LHS from Eqn. 18 in [BW98], but
5 // we negate the K term because of how hyperelastic energies work
6 _A = _M - _dt * C - _dt * _dt * K;

This matches the linear system from Eqn. (11.5)[
M− h ∂f∂v − h

2 ∂f
∂x

]
∆v = h

[
f + h ∂f∂xvn

]
but we have made the substitutions h = _dt, K = ∂f

∂x and C = ∂f
∂v , and external forces

have been folded into f .
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11.2.2 Position-Based BDF-1

In the HOBAK code, specifically in

BACKWARD_EULER_POSITION::solveRayleighDamped

the position-based BDF-1 is implemented as:
1 const REAL invDt = 1.0 / _dt;
2 const REAL invDt2 = invDt * invDt;
3 _b = (invDt * _M - C) * _velocity + R + _externalForces;
4 _A = _M * invDt2 - (C + collisionC) * invDt - K; // w/ Rayleigh

This yields the exact system that we saw in (11.7)

A =
1

∆t2
M− 1

∆t
C−K

b = f int + f ext +
1

∆t
[M−∆tC]vt.

11.2.3 Newmark and Newton-Raphson

As a bonus, let’s take a look at Newmark integration from within a full-on Newton-
Raphson solver. This one tends to be slightly livelier than the BDF schemes, but does not
have the same stability guarantees, which is one of the main reasons we prefer BDF
methods in production. However, we provide it here for research testing purposes.

In this case we’re on a root-finding mission where we’re trying to get some function to
converge to zero. Let’s call the the function h(x), since f(x) is already claimed by force.
We want to drive it to zero:

h(xn+1) = −f ext

h(xn+1) + f ext = 0

First we apply a Taylor truncation:

xr+1 = xr −∆x

h(xr+1) + f ext ≈ h(xr)−
∂h

∂xr
∆x + f ext

h(xr)−
∂h

∂x
∆x + f ext = 0

∂h

∂x
∆x = f ext + h(xr).

Here, the subscript r has been used in lieu of n because it denotes Newton-Raphson
iterations, not the next timestep. The iteration is initialized with xr = xn
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Let’s try this out with position-based Newmark. In this case, we have the updates for
position:

vn+1 = α3(xn+1 − xn) + α4vn + α5an

an+1 = α0(xn+1 − xn)− α1vn − α2an,

Substituting into our force equation yields:

Man+1 −Cvn+1 − f int(xn+1) = −f ext

M
(
α0(xn+1 − xn)− α1vn − α2an

)
−C

(
α3(xn+1 − xn) + α4vn + α5an

)
− f int(xn+1) = −f ext

We can plug in our current Newton-Raphson iterate xr = xn+1 to clarify things slightly:

M
(
α0(xr − xn)− α1vn − α2an

)
−C

(
α3(xr − xn) + α4vn + α5an

)
− f int(xr) = −f ext

(11.13)
Relating things back to the generic form yields:

h(xr) = M
(
α0(xr − xn)− α1vn − α2an

)
−C

(
α3(xr − xn) + α4vn + α5an

)
− f int(xr)

∂h(xr)

∂xr
= Mα0 −Cα3 −Kr

where Kr = ∂f int(xr)
∂xr

. Plugging back into the Newton-Raphson process gives:

∂h

∂x
∆x = −f ext − h(xr)

(α0M− α3C−Kn) ∆x = −f ext + M
(
α0(xr − xn)− α1vn − α2an

)
−

C
(
α3(xr − xn) + α4vn + α5an

)
− f int(xr)

This is then implemented in NEWARK::solveRayleighDamped as:
1 _temp = _alpha[0] * (_position - _positionOld) - _alpha[2] * _accelerationOld

-_alpha[1] * _velocityOld;
2 _temp = _M * _temp;
3

4 // compute the RHS of the residual:
5 // C (alpha_4 (q_{i+1} - q_{i}) + alpha_5 q^{dot}_{i} + alpha_6(q^{dot dot}_{

i}))
6 _b = _alpha[3] * (_position - _positionOld) + _alpha[4] * _velocityOld +

_alpha[5] * _accelerationOld;
7 _b = C * (-1.0 * _b);
8

9 // assemble full residual: LHS + RHS + R - F
10 _b += _temp - R - _externalForces;
11

12 // assemble system matrix A
13 _A = _alpha[0] * _M - _alpha[3] * C - K;
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Gopeek at HOBAK/src/Timestepper/NEWMARK.cpp to see how this is then solvedmultiple
times to convert to a solution. If you peek at HOBAK/src/Timestepper/BDF_1.cpp and
HOBAK/src/Timestepper/BDF_2.cpp4, you will also see versions of BDF and BDF-2 that
take multiple Newton-Raphson steps. These are provided for illustrative and research
purposes only; they are not the methods used in production.

4Without line search. Still need to add that.
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Chapter 12

Constrained Backward-Euler

Large Steps in Cloth Simulation, Baraff andWitkin (1998), ushered in a newera of deformable
simulation by demonstrating the stability benefits of implicit integration. Despite the
time that has passed, it remains the foundation of Pixar’s cloth and volume simulator,
called Fizt. Things in this chapter will be discussed in terms of Backward-Euler or BDF-1
from chapter 11, but generalize to the BDF-2 method as well1.Using Backward-Euler we
assemble and solve the linear system below at each time step:2[

M− h ∂f
∂v
− h2 ∂f

∂x

]
∆v = hfn + h2 ∂f

∂x
vn,

Ax = b.

This linear system is sparse, but can still be quite large in practice. We represent our
system in a Block Compressed Row Storage format (BCRS) with 3× 3 blocks. We use
Preconditioned Conjugate Gradient (PCG) to solve our linear system, but handle hard
constraints different from the original paper, which we will discuss shortly. We use hard
constraints where two-way coupling is not needed. Some attachments and collisions
with character geometry, or other kinematic objects, fall into this category. We use
penalty forces to handle attachment and collision between dynamic surfaces for two-way
coupling, as did the original paper. Later in this chapter, we will also discuss techniques
we have found useful to increase performance of the assembly and solution of this system
despite its changing structure.

12.1 Constraint Filtering in Baraff-Witkin Cloth
In this section, we will give a brief overview of the constraint mechanism described in
Baraff andWitkin (1998). To precisely control the motion of a particle in any of its Degrees

1The equation for Backward-Euler is more compact and convenient for our discussion.
2We only take one Newton step per time step for performance concerns and typically take ten steps per

frame for motion quality.
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of Freedom (DOFs), a mass modification scheme was developed. Given the current
particle state (xn, vn), one can easily compute the required ∆v to reach a target velocity
or position state at the end of the time step. We project out any free DOFs from ∆v and
following the convention of the original paper, we label this quantity z. To enforce the
constraint during the solution of our linear system, the concept of per-particle constraint
filters was introduced. Each particle has a filter Si with its constrained DOFs as follows:3

Si =


I if zero DOFs are constrained
I− p̂ip̂

T
i if one DOF (p̂i) is constrained

I− p̂ip̂
T
i − q̂iq̂

T
i if two DOFs (p̂i and q̂i) are constrained

0 if all three DOFs are constrained

(12.1)

These filters are applied within the inner loop of of the original Fizt solver. At each
iteration the solution is projected onto a state which satisfies the constraints, but nothing
about how this projection might impede the convergence of the solver was considered.

12.1.1 Pre-filtered Preconditioned Conjugate Gradient (PPCG)

In a later version, creatively named Fizt2, we adopted the Pre-filtered Preconditioned
Conjugate Gradient (PPCG) method presented in Tamstorf et al. (2015). We are only
using the pre-filtering component from §8 in the paper, which already gives a significant
speedup. We will touch on preconditioning further in §12.7.

The PPCG formulation eliminates the need to apply the filters in the inner loop of PCG.
Unlike the method of Ye (2009), the PPCG method does not change the size of our linear
system, which enables us to maintain certain aspects of our system data structures. PPCG
also makes it more convenient to send our system to a direct solver like CHOLMOD or
PARDISO. We use a direct solver as fallback to handle severely ill-conditioned systems.

The formulation is: (
SAST + I− S

)
y = Sc (12.2)

y = x− z (12.3)
c = b−Az. (12.4)

The key equation is the first one. The SAST term is a straightforward projection of the
original matrix A into the subspace spanned by the filters S.4 This creates a nearly-
rank-deficient matrix in the subspace comprised of the DOFs that were removed from
the system. The I − S term then serves to improve the conditioning of this subspace.

3In chapters 10 and 11, we overload the use of the symbolˆto describe a unit vector, where in chapter 4 it
was used to describe the cross-product matrix of a vector.

4Since S is symmetric, we could just write SAS, but the transpose makes the projection a little more
visually obvious.
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Anywhere that filter was applied, the I− S essentially gives things a boost with a bunch
of ones.

This is easiest to see if some particle i was constrained entirely, and Si = 0. Now we are
in trouble because we have a 3× 3 block of zeros along the diagonal. The Gerschgorin
circle theorem (roughly) states that the eigenvalue corresponding to the row must lie
inside some disc. The diagonal entry prescribes the disc’s center (aii = 0), and the radius
is the absolute sum of the off-diagonal entries in that row (r =

∑
j,j 6=i |aij |). The fact that

the disc must be centered at zero is bad news, because it means that the eigenvalue is
close to zero, and almost certainly ruining the conditioning of the matrix. The I− Si fix
will paste an identity matrix precisely on top of that zero block, and replace those zeros
along the diagonal with ones. The Gerschgorin discs are now centered around one, and
eigenvalues will be near one, which is a much better state.

Example Prefiltered PCG Modified PCG
Miguel 4.05× 2.09×
Nana 2.95× 2.03×
Dress 1.95× 1.55×
Hector 2.09× 1.12×
Mama 2.92× 1.55×
Average 2.79× faster 1.67× faster

Figure 12.1.: Speedup of solver stage using Prefiltered PCG from Tamstorf et al. (2015),
without multigrid, and Modified PCG from Ascher and Boxerman (2003)
over the original Baraff and Witkin (1998) algorithm.

As observed by the authors (page 9, first column, second paragraph), boosting the filtered
subspace in this way improves the conditioning of the matrix, so PPCG should converge
even faster than the MPCG method in Ascher and Boxerman (2003). We found this to
be true in our tests as well. PPCG runs 2.79× faster than the original Baraff and Witkin
(1998) solve, while Ascher and Boxerman (2003) only runs 1.67× faster (Table 12.1). PPCG
gives a 36.0% wall-clock improvement over the 12.6% improvement achieved by Ascher
and Boxerman (2003) (Table 12.2). Again, this 2.79× speedup was achieved even without
the multigrid component of the paper.

Finally, we performed a performance breakdown of Fizt using the PPCG formulation
(Table 12.3). While we had become accustomed to seeing a roughly even split between
the solver, matrix assembly, and collision processing (i.e. CCD) stages, we found that the
collision stage was now the tallest nail.

The wrong conclusion here would be that, since the solver only takes up 16.5% of the
running time, further solver research is now unnecessary, and we should instead pour
all of our research effort into accelerating collisions. This is only one performance snapshot
circa 2015, and it suggested at the time that a short-term effort into squeezing extra
performance out of the collision code might be a good idea. The numbers have shifted
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Example Prefiltered PCG Modified PCG
Miguel 53.9% 17.0%
Nana 29.1% 10.5%
Dress 39.4% 13.9%
Hector 17.0% -1.0%
Mama 40.9% 22.7%
Average 36.0% faster 12.6% faster

Figure 12.2.: Overall wall-clock performance improvements of cloth solver using Pre-
filtered PCG from Tamstorf et al. (2015), without multigrid, and Modified
PCG from Ascher and Boxerman (2003) over the original Baraff and Witkin
(1998) algorithm. Numbers include system assembly and collision process-
ing.

since then, but this snapshot is still interesting, as long as you do not extrapolate too
much from them.

Example PPCG Solve Matrix Assembly Collisions
Miguel 15.9% 32.6% 51.5%
Nana 8.1% 25.4% 66.5%
Dress 30.8% 31.4% 37.8%
Hector 8.27% 13.0% 78.0%
Mama 19.7% 30.8% 49.5%
Average 16.5% 26.6% 56.5%

Figure 12.3.: Simulator time breakdown, circa 2015. Our conclusion was that the collision
stagewas now the ripest target for optimization, not that the PCG component
is now somehow solved forever and that the focus their research on collision
acceleration.

Our main conclusion is that when implementing a Baraff and Witkin (1998)-type solver,
the current best practice is to use the PPCG constraint-filtering formulation from Tamstorf
et al. (2015), even if you do not end up using all their multigrid components.

12.2 Performance Improvement Techniques
System assembly and solution are critical to overall simulator performance. Parallel
implementations of both are essential problem sizes we usually run with Fizt. We find
that we are not compute bound on modern CPU architectures, but instead limited by
memory bandwidth. Therefore, reducing memory traffic is a worthy avenue of pursuit
for gaining performance. In the following sections, we will discuss some techniques that
we have used to improve the performance of system assembly and our PPCG solver.
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(a) (b)

Figure 12.4.: Sparsity pattern: (a)Default mesh ordering (b) After Reverse Cuthill-McKee

12.3 Reverse Cuthill-McKee
At every iteration of the PPCG solver, we multiply our matrix Awith a vector. It is trivial
to parallelize this operation over the rows of A which does not require any locking.
Since A is sparse, the multiplication of the row blocks with a vector does not access the
memory of the vector uniformly. We would like to reduce the amount of random access
to the vector during this operation.

One way to reduce random access is to reorder the particles in a way that minimizes
minimizes the matrix bandwidth. The Boost Graph Library has a number of reordering
strategies, but Reverse Cuthill-McKee has workedwell for our purposes. At the beginning
of our simulation, we make a graph of the fixed system connectivity. Since Fizt does not
do adaptive re-meshing or tearing, we can exploit the fixed structure of any cloth or
volume meshes in the system. Any permanent attachments, such as springs, between
dynamic objects are also considered. The graph edges are made from the ij entries above
the diagonal of our global Jacobian matrix. One iterate through all the fixed elements
and create a unique collection of these edges and use an initial global ordering of the
particles. Once the reordering is performed, we assign each simulated particle an index
from this reordering which we call the global solver index. Local element and orderings
remain unchanged. The global solver index now indicates the row index of the particle in
our linear system.

12.4 System Assembly
As mentioned, a considerable amount of structure remains fixed during our simulation.
The sparsity pattern of our dynamic objects remain fixed, but entries from collision
penalty forces are transient and there may be other spring forces that are also transient.
We divide our force elements into these two broad categories of fixed and transient.
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Fixed force elements have local storage for the forces and their Jacobians with respect to
x and v. To support dihedral bending forces and tetrahedral elements, they have fixed
storage for configurations of up to four particles. Since our Jacobians are symmetric, we
only allocate the storage required for the upper diagonal block matrices. Given local
element particle indices i and j such that i ≤ j the index of the 3 × 3 block in the
appropriately sized storage array is given by the following code snippet:

1 uchar FixedElement::localPairToArrayIndex(uchar i, uchar j)
2 {
3 // assert is here for the cautious.
4 // If you pass negative indices that’s
5 // another thing you should never do!
6 assert(i <= j);
7 uchar n = (_numParticlesInElement << 1) - 1;
8 return j + ((n - i ) * i) >> 1;
9 }

We also create a Fixed Global Sparse Matrix (FGSM) with 3 × 3 blocks for the entries
of ∂f

∂v and ∂f
∂x . Each block in the FGSM has a collection of pointers to the blocks of the

fixed elements that contribute to it. At the beginning of our simulation, we construct the
FGSM and flatten it into a single vector containing all of these blocks. This vector only
needs to contain the upper triangular blocks of the system for reasons I’ll explain shortly.

The first step in system assembly proceeds by traversing the fixed force elements in
parallel to compute the forces and Jacobians which are stored locally. In a second pass,
we traverse the blocks of the FGSM to accumulate the results of the first pass. Once the
upper triangular blocks are done accumulating all their contributions, the lower diagonal
blocks receive a transposed copy of the corresponding upper diagonal accumulated
result. This helps reduce the memory bandwidth requirements of the second pass. We
use a similar scheme for accumulating the forces from the elements to a global vector
with a 3× 1 entry per particle. Assembly in parallel with can be done in a single pass
using locks and with less memory usage, but the advantage of the two-pass approach is
that it is lock-free.

00 03

13

23

33

02

12

22

01

11

00 03

13

23

33

02

12

22

01

11

00 03

13

23

33

02

12

22

01

11

00 02

12

22

01

11

00 02

12

22

01

11

00 03

13

23

33

02

12

22

01

11.....
.....

Every simulated particle has a unique global solver index that indicates its associated
block-row in the linear system. Our global system structures contain block entries both
above and below the diagonal. While this requires more memory, it allows for simple and
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coherent traversal when we need to perform per-row operations. When accumulating
into the FGSM blocks, we examine the corresponding pair of global solver indices of the
the block to determine whether we can add the block directly, or need to add its transpose.
Some Jacobians have symmetric blocks, but others do not. Making amistake of incorrectly
orienting the block during accumulation can lead to long nights of debugging. The
resulting simulations may have odd behavior, or your global system may go indefinite.
You have been warned.

A deformable simulator may have many fixed forces, including simple per-particle
forces like gravity, drag, goal-springs, etc. Having a clean and well structured element
class for each force type might seem natural at first, but this has a downside. The more
elements one needs to traverse, themorememory bandwidthwill limit your performance.
Consider the sparsity pattern of the following cloth example with point, triangle and
dihedral forces:

Stretch/Shear

Dihedral Bend

Per-Particle

It makes sense to at least group the element forces by their mesh component domains,
but we can go further. Instead of having a force element that handles each type of
mesh feature, we aggregate overlapping forces onto the same fixed force element. Some
elements naturally will be responsible for more force types than others and some will
remain isolated.

In the case of cloth, we aggregate stretch/shear, bending and per-particle forces. When
accumulating the Jacobian blocks over the whole mesh as depicted in image (a), we must
traverse 97 elements and accumulate from 1266 element blocks. These estimates assumes
each stretch/shear contributes 6 blocks, each dihedral element contributes 10 blocks,
and each particle contributes one block. We are only considering blocks from the upper
diagonal of the element force Jacobians and our numbers are doubled to account for
both ∂f

∂v and ∂f
∂x .

By exploiting the aggregation of elements in (b), we only traverse 46 elements and
accumulate from 870 element blocks. In this example, the aggregation strategy more
than halved the number of elements traversed and reduced our element block access by
almost a third. I don’t recommend the aggregation approach for a a first implementation,
but if you do implement it, remember that the orientation of the blocks must be consistent
at the element level when accumulating the Jacobian blocks from different forces.

152



12. Constrained Backward-Euler

+27

00 03

13

23

33

02

12

22

01

11

(a)
+27

00 03

13

23

33

02

12

22

01

11

(b)

Transient force elements are the second source of forces and Jacobians. Unlike fixed
force elements, these do not have any local storage. Instead, we define a Transient Global
Sparse Matrix (TGSM) which has per-thread row storage of the blocks using a flat-map
structure. We traverse our transient elements in parallel, and each one deposits its block
contributions into this structure. A parallel per-row reduction step is then performed
over the per-thread flat-map structures in the TGSM. We handle force accumulation with
a different structure and reduction pass.

We build two matrices to pass to our solver, but many entries from the TGSM overlap
with the blocks of the FGSM. In the image below we illustrate the overlap in block entries
from a vertex-face contact with the FGSM. We accumulate any overlapping entries from
the TGSM into the FGSM in another per-row parallel pass. This process also collects
indices to the non-overlapping entries of the TGSM for our next stage of populating our
BCRS structures. This process effectively removes the overlapping blocks from the TGSM
with respect to our solver.

At this stage, the FGSM and TGSM both contain the accumulated blocks of ∂f∂v and ∂f
∂x .

We have not constructed either side of the linear system needed for our PPCG solver. We
perform this construction as we build up two separate BCRS structures. As we populate
the blocks of our BCRS structures, we first construct the term for A and then apply any
necessary constraint filters S. When we process a block on system diagonal, we add the
I− S term.
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The BCRS layout for the FGSM remains fixed. Only the block values need to be updated,
which can be done efficiently in parallel. Further, since the bandwidth of the fixed system
has been reduced, we use type short to represent our column indices as offsets from
the main diagonal for a tiny reduction in memory bandwidth during the sparse-matrix
vector multiplies. The BCRS layout for the TGSM is computed at each step from its
remaining entries. This task is serial, but requires only one traversal over the rows of the
TGSM to determine the storage requirements and rows offsets for the BCRS structure.
Once the memory is allocated, these entries are also populated in parallel. We use type
unsigned int for column indices because an entry may exist in any column from an
interaction between two particles. In large systems, a shortwill not have the range for
this task. Assuming we have our force accumulation, vector we can also construct the
corresponding b−Az term for our Right Hand Side (RHS) during the traversal. We then
only need to apply our constraint filters S to this term to complete the system assembly.
Instead of performing a second pass over the data, we perform the construction of our
RHS during our parallel construction of the LHS.

12.5 System Reduction and Boundary Conditions
At the beginning of each frame we examine which particles will remain fully constrained
over it5. Sometimes large regions of our simulated objects become fully constrained and
we can exploit this. If all the fixed force elements incident to a particle also have all
fully constrained particles we remove the particle from the system so that it does not
appear in the rows of our linear system6. We assign such particles a global solver index <
0. Fully constrained elements are also removed from the system assembly. We reindex
the remaining particles global solver index to the correct range. We don’t re-apply our
bandwidth reduction for performance reasons. While this won’t reduce the bandwidth
further we take comfort in knowing it won’t grow any larger either.

For each fully constrained and removed particle we calculate vk and ∆vk, using finite
differences of the known positions. Even though these particles may have been removed
from the system, it is possible that collision forces or soft constraints will require the
interaction between a simulated particle and one that has been removed. The simulated
particle receives the force, but we still need to express the interaction, with what is
essentially now a kinematic particle, through the ∂f

∂v and ∂f
∂x terms of our system. The

force element Jacobian blocks of the between simulated particles including itself, will get
accumulated into the global matrices just as before. Jacobian blocks between a simulated
and removed particle must be handled differently since the removed particle is not
represented in our system.

Instead we add [h ∂fs
∂vk

+ h2 ∂fs
∂xk

]∆vk from the mixed block contributions of the LHS to

5We also examine if any removed particles become unconstrained and if they and any associated
elements need to be added back. We only remove particles if the number to be removed exceeds a threshold
of 200.

6We leave a boundary of fully constrained particles that have both simulated and non-simulated particles
in our system presently even though technically this could be avoided.
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the RHS. We also add any mix block velocity contribution from the [h2 ∂fs
∂xk

]vk term in
the RHS. This technique is also used to handle arbitrary spring forces between points
between a dynamic and kinematic object without increasing the size of the system.

12.6 PPCG Solver Details
Fizt computes almost everything in double precision. The primary exception is our PPCG
solver, and the system we pass to it. When we assign the block values to our BCRS
structures, we convert to single precision. We perform the same conversion to the RHS
after applying our constraint filters. We pass a single-precision version to our PPCG
solver to further reduce the memory bandwidth requirements of the sparse matrix vector
multiplication.

Our PPCG solver is non-standard in that it takes two separate BCRS structures to represent
theLeftHandSide (LHS), but thebenefits of exploiting thefixed structureduring assembly
appears to be worth the awkwardness7. We have to handle the application of our LHS in
this split form. We first determine which rows have terms from the TGSM BCRS and
FGSM BCRS. Each row gets a function pointer appropriate to the task of multiplying the
necessary entries with a vector. We also utilize loop unrolling of the row traversal with a
block size of 4. The ranges and remainders for this unrolling are computed once per solver
call solver for the entries of the TGSM BCRS. There are probably more gains to be had by
spending more long nights with a profiling tools, a snapshot of our performance gains
between early 2015 and Summer 2016 are presented in figure 12.5. The original times per
frame do not include the addition of continuous collisions, which will be discussed later.
The 2016 timings include the additional overhead from continuous collisions.

12.7 Preconditioning
Fizt uses a 3×3 Block Jacobi preconditioner that is the inverses of the diagonal blocks from
the LHS. While simple, we have found that it works well in practice. More sophisticated
preconditioners have been attempted, such as the parallel Incomplete Cholesky of Chow
and Patel (2015), and the other preconditioners in the ViennaCL library (Rupp et al.
(2016)). We found that they were not able to consistently accelerate our tests. Multigrid
preconditioners like the one of Tamstorf et al. (2015) are also a possibility, but their
advantages only begin to become significant when meshes have very large vertex counts.

One obvious question is whether 3×3 is the optimal size for a Block-Jacobi preconditioner.
We did indeed run a series of tests to verify this. Table 12.6 shows timings we collected a
sandbox quasistatic simulator (Glove) in order to study whether a different block size
might benefit wider deployment in Fizt. Themesh consisted of 70,831 vertices and 141,579
triangles.

7We experimented with using ViennaCL on the CPU with the same convergence tolerance and our
custom solver was still faster.
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Figure 12.5.: Fizt examples circa 2015/2016. All were run with 6 threads at 10 steps per
frame. All times in seconds.

For Table 12.6, we ran a quasistatic skin simulation, where the skin was simulated using
a cloth simulation as described in Kautzman et al. (2018). For measurement purposes,
the simulation was run to four digits of precision for three Newton iterations. We report
the number of PCG iterations needed, as well as the overall wall-clock time. The 3× 3
block is the clear winner on wall-clock time. The larger block sizes predictably reduce
the number of PCG iterations, but the growing cost of computing the block inverses
consistently outweigh this reduction.

The next question is whether a faster but less precise block inverse would win back some
of the speedup. Again, as a preliminary test we tried a variety of factorizations available
in the Eigen (Guennebaud et al. (2010)) library, and the data is shown in Table 12.7. None
of the factorization strategies produced dramatically improved results.

To follow this line of inquiry to its conclusion, the last thing to try is an Incomplete
Cholesky or LU factorization that approximates the block inverses. However, we halted
the study based on the existing data. Even if an incomplete factorization could be
found that exactly (and impossibly) matched the full factorization, and ran in the same
wall-clock time as the 3× 3 case (again impossible), it would only reduce the number of
PCG iterations by 20%. Since the PCG solver generally consumes 33% of the wall-clock
time, the expected speedup to Fiztwould only be around 6.7%. Investing more effort in
chasing this level of acceleration did not seem promising, so the inquiry was halted.
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Block Size Iteration 1 Iteration 2 Iteration 3 Total Time
1 981 822 2028 17.03s
3 625 531 1023 12.47s
6 654 542 1203 13.30s
10 721 597 1217 13.98s
12 628 541 1123 13.71s
25 666 553 1321 14.71s
50 598 513 850 13.69s
100 486 507 826 15.00s

Figure 12.6.: Performance of Block-Jacobi Preconditioning over different block sizes. We
ran a quasistatic cloth solve for three Newton iterations, and report the
number of PCG iterations for each iteration, as well as the wallclock time of
the overall solve.

Factorization Iteration 1 Iteration 2 Iteration 3 Total Time
LDLT 486 507 826 15.44s

Column-pivoting QR 498 509 837 17.42s
Full-pivotingQR 498 509 837 22.00s
HouseholderQR 498 509 837 17.63s
Partial-pivoting LU 498 509 837 17.24s
Full-pivoting LU 498 509 837 17.45s

Figure 12.7.: Performance of Block-Jacobi Preconditioning for 100 × 100 blocks, using
different factorization strategies. The setup is otherwise the same as Table
12.6.

12.8 A Word on Determinism
Fizt is made parallel using OpenMP. This includes our PPCG solver. Dynamic scheduling
is used, but care must be taken when doing so. Using dynamic scheduling in a loop
containing reduction can lead to non-deterministic results because of differences in the
order of rounding error accumulation. Having a suite of regression tests that exercise the
simulator is a critical part of maintaining production code, but this can only be achieved
though if we have deterministic behavior. Otherwise, false positives will have us chasing
non-existent bugs.

Other common sources of non-determinacy fall into a handful of categories. Do not
store anything as a pointer in an ordered container like a set or map if traversal of the
container can impact rounding error accumulation. Contacts are one such category. We
find and gather penalty force contacts in a parallel in non-deterministic fashion, but
choose not to compute the response on the fly. Instead we sort them before computing
and accumulating their force and Jacobian terms which ensures that their contributions
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are accumulated the sameway each time for a given thread count. There is a performance
hit for a determinism guarantee. Fizt has a deterministic mode for testing and a faster
non-deterministic mode for production use.

12.9 Writing Efficient OpenMP Code
Writing a single threaded version for a first implementation is advised to keep things
simple for an initial pass of debugging. Once you are confident in your implementation
though, you are going to want speed. Using OpenMP naively is pretty straightforward.
One can parallelize loops with simple for-loop or task-loop pragmas and can get a
nice gains over a single threaded implementation quickly that will scale to 4-6 threads.
The ease of using these pragmas can lead to writing inefficient code however and will
limit the scalability to higher thread counts. In early 2021, a major refactor of Fiztwas
performed to have the entire simulation occur in a single parallel region to reduce thread
creation overhead. In this refactor many barriers were removed. Task parallelism was
also added to the BVH intersection, but steps needed to be taken to limit the number of
tasks spawned. We also found that omp for had less overhead than omp taskloop for
parallelism over arrays. The performance impact on Fizt before and after this refactor
can be seen in figures 12.8 and figure 12.5. In this example, Buzz’s suit is comprised of
67K simulated vertices with two layers in constant contact and over 200K vertices in the
detailed collision geometry. Despite the pinching and geometric complexity Fizt can
simulate this in a little over 12 seconds per-frame with taking 10 steps per frame using
12 threads8.

8On can see that the thread scaling plateaus after 12 threads. The 2021 refactor was just one of a series
on ongoing efforts to improve performance.
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Figure 12.8.: Timings for Buzz example over different thread counts before and after the
threading refactor. Simulation times per-frame on the vertical axis are in
seconds.

Figure 12.9.: CPU utilization graph on the Buzz example running with 16 threads, half
the number of available threads, before and after the threading refactor.
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Figure 12.10.: After threading improvements, the dancer asset from Coco with over 105K
simulated vertices simulates in 6 seconds per-frame with 16 threads.
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Chapter 13

Collision Processing

Collision detection and response are critical components of any dynamics simulator. A
vast body of work on collision detection exists and a full day course on the topic could not
do justice to it. In this chapter we will only discuss the techniques that we employ in our
simulator Fizt, and acknowledge that there are a number of other ways to approach these
problems. That said our combined approach has proven itself able to handle challenging
scenarios found in a production environment and often ignored by the literature.

Fizt is used to simulate cloth and volumes that must be able to collide with the animated
geometry which, we refer to as kinematic geometry. Collisions between dynamic geometry,
including self-collision, must also be handled by our system. All of our collision geometry
is described by manifold triangles meshes and in the case of tetrahedral volumes we
only collide with the surface mesh. Each triangle mesh has an axis aligned bounding box
hierarchy which is updated at each time step, and is typically rebuilt once per frame.
The number of separate objects in Fizt is typically small, so we do not bother with a
broad-phase collision algorithm like those typically found in rigid body simulators.

13.1 Proximity Queries
Proximity queries look at the geometry at a discrete snapshot in time and are used to
detect potential collisions between mesh features. The goal of the response is to prevent
actual collisions from occurring over a the time step. Our response to proximity-based
contacts is encoded in our linear system, and interacts with the all the other forces in our
system.

Vertex-face queries between dynamic particles and the faces of our kinematic meshes are
performed first. Our kinematic meshes are mostly closed and consistently oriented. We
define a collision envelope around the surface by offset and inset distance parameters.
To prevent against redundant contact data, we partition the space above and below each
mesh face using this envelope. We refer to these partitioned regions as cells. The cells
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provide us with a way to cull many of the undesirable contacts that occur when the mesh
resolution is much smaller than the specified collision envelope 1.

To construct the cell regions of the faces, we first define a unique bisector plane for each
edge2. We define the edge normal, ne as the average of the available neighboring face
normals. The normal of the bisector plane for this edge is then defined by neb = ne × eij
with eij = xj − xi. We then normalize to get n̂eb and define distance from a point xp to
the bisector plane by deplane = n̂eb · (xp− xi). We then orient our plane inward toward its
first face neighbor, f0, by ensuring that the vertex opposite the edge produces a positive
distance to the edge bisector plane.

To examine whether a particle is in a face cell, we first check that the position is between
all three bisector planes by computing deplane for all three edges. When performing this
check, we examine whether the face is f0 or f1 with respect to the edge. If it is f1, we
negate the distance returned. This allows for a simple check that deplane >= 0 for all
three edge bisector planes regardless of which face we are querying. Then we compute
dfplane = n̂f · (xp − x0) to determine if it is within our collision envelope in the normal
directions and if it is above or below the face plane.

At first glance, this looks like a closest-point lookup into a clipped Voronoi diagram.
While this does characterize the local picture, the global view is subtly different. Each
face has its own clipped Voronoi cell, but the Voronoi cells do not partition space, and
are allowed to overlap. An example of this is shown in Fig. 13.1. Since cloth can double
back on itself in space, it is in fact possible for a particle to be inside more than one cell at
the same time. The particle is not allowed to be inside two adjacent cells at the same time,
but if it is inside the collision cells of two faces that are far away from each other, we
consider the particle to be in collision with both faces.

A particle position that satisfies all of these checks is inside our cell region, but this
does not necessarily mean it violates our collision envelope. As an edge becomes more
creased, it becomes more probable that the point can be inside the cell, but outside our
collision envelope. We illustrate such this in the second image of figure 13.2. After we
verify the point is inside the cell, we compute closest point to the face, (Schneider and
Eberly (2003)), and compare the distance to our collision envelope.

To create the bounding boxes of our cell regions, we compute the vectors at each vertex
defined by the intersection of the incident bisector planes. Using these directions, we
enclose the the extruded vertices in both the offset and inset directions. Instead of scaling
the direction by the inset or offset directly, we use the magnitude required to reach the
inset or offset in the normal direction with respect to the face3.

1Some post processing of the per-particle contact data is still required despite our region partitioning. It
is still possible that particle could contact multiple incident faces at a vertex or edge boundary.

2One should always guard against degenerate cases like collapsed faces, edges or vanishing edge
normals.

3Finding the minimum bounding-box of a face cell requires some attention when the dihedral angle
between edges becomes large.

162



13. Collision Processing

 

Figure 13.1.: A 2D version of our collision cell strategy. On the left, we are looking at
the red vertex, and seeing which line segments in the mesh it is in collision
with. On the middle left, it is inside the blue cell, so the vertex is in collision
with that segment. On the middle right, what if the mesh doubles back on
itself? On the right, it is totally legal for the vertex to be inside cells of two
segments, both the blue and green ones. The vertex is in collision with both
segments.

(a) (b)

Figure 13.2.: Particle-Kinematic Face Cell Check: (a) Cell region containing a particle in
the envelope. (b) Particle is inside the cell, but outside envelope.
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Large inset values for relatively thin regions can cause the inset region to extend through
the backside of an opposing region of the the surface. This can lead to particles getting an
erroneous response that pulls them through the other side of a surface. An inset reduction
step is performed each time the simulator receives a new sample of the kinematic geometry.
The reduced insets at these samples are then interpolated across the time steps. When we
discover a particle that satisfies all of our contact criteria, we create a contact constraint for
the particle and add the kinematic face to it. If a particle already has a contact constraint,
we add the new face to it.

13.2 Filtered Constraints for One-Way Response
Our kinematic meshes have scripted motion that remains unchanged by the simulator.
The scripted motion allows us to know the kinematic positions at the end of each time
step. One can think of kinematic objects being as made of particles with infinite mass,
which means that collision with a dynamic particle is a one-way interaction.

A proximity contact with a single kinematic face has a straightforward response. We
define local coordinates for the particle at the current state using the u, v coordinates and
its normal offset from the face. The u and v are the first two barycentric coordinates of the
particle’s projection into the plane, but may lie outside the boundary of the face. Since
we know the state of the kinematic triangle at the end of the step, we can construct the
particles’s desired world space position at the end of the step. Using the current particle
state x and v, we can determine the ∆v needed to reach this desired position. We use the
constraint filtering mechanism described in §12.1 to ensure our system solution achieves
the target ∆v in the normal direction at the end of the step. Constraining only the normal
direction allows it to slide tangentially. If we included any collision offset correction in
our desired target position, it would result in unnecessary energy being added to the
system. The technique described so far is only used to match the velocity of the point
on the kinematic face. Offset correction is handled by the position alteration technique
described section 6.4 of Baraff and Witkin (1998). They compute the ∆x term in the
normal direction at the end of the step that is required to reach the desired collision
offset. Then ∆x is added to the appropriate term multiplied by ∂f

∂x in the RHS of the
system. Finally, ∆x is added to the position state update. The addition of the term to the
RHS allows the connected particles to be informed about the additional displacement
during the solve.

Following section 5.4 of Baraff and Witkin (1998), we determine whether a constrained
particle that is sliding on a kinematic surface should be released by computing the
residual constraint forces as the last step of our linear system solve. If the constraint force
was pulling toward the surface, we do not constrain the particle in the next time step.
There are more accurate ways to handle this, but as noted in Baraff and Witkin (1998), it
is far less expensive than dealing with the combinatorial complexity of handling proper
inequality constraints.

When a particle is in proximity of multiple kinematic faces, we employ a variant of the
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(a) (b) (c)

Figure 13.3.: Character Self-Intersection Resolution: (a) Volume simulation with self-
collision. (b) Deformed subdivision surface. (c) Clean cloth simulation
result.

Flypapering technique described in Baraff and Witkin (2003). Each dynamic object in
Fizt has an identical mesh representation that has its vertex positions warped by our
character rig. Instead of using a weighted average of the target positions from multiple
faces, we fully constrain the particle to move relative to one of the faces found by our
proximity query. We choose the face with the motion that minimizes the difference in
displacement between the constrained motion it would have on the particle and the
motion of the warped position during the step. Said another way, we choose the face
that would most closed match the velocity produced by the rigged motion.

In recent films we have taken a very different approach to handling self-intersection of
our characters. We now run a volume simulation to deform the character geometry in
order to leave space for a cloth simulation in a second pass. This is depicted in figure 13.3
and further details can be found in Wong et al. (2018). This technique is relies on a robust
and efficient constitutive model, but also heavily depends on our collision detection and
response between dynamic surfaces which we will cover next.

13.3 Proximity Between Dynamic Meshes
Our second set of proximity queries is for collision, and self collision, between dynamic
surfaces. Dynamic surfaces such as cloth are not closed, and do not have the concept of an
inset region. Instead, we have a self-offset separate from our collision offset which is used
for collisions between different dynamic meshes. Our vertex-face proximity query is very
similar to that of kinematic meshes, but it must be altered to handle open boundaries.
When a face has a boundary edge, we extend its bounding box by the maximum of the
self-offset and offset values in the appropriate directions. To do this, we examine the
sign from the negative of the boundary edges’s bisector normal. The box is extended
with the maximum of our two offsets in the appropriate cardinal directions.

Our particle-in-cell test is no longer sufficient, but is still necessary. Without some
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notion of space-partitioning, a large self-offset on a fine resolution mesh could lead
to undesirable self collisions, which would deform the our mesh in ugly ways. Let’s
examine a couple of particle-face cases where our previous check breaks down. In case
(a) below the separating plane between the two faces would only allow the particle to
collide with one face when it could be inside the collision envelope of both. In case (b)
the self-collision between a face and a neighboring particle would be rejected by the
bisector plane between the faces.

(a) (b)
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To address these issues, and to handle boundary edges, we present the new test criteria
summarized by the following pseudo-code:

1 bool InFaceRegion(p, triFace)
2

3 // If the projection of the point into the face plane
4 // resides inside the face boundary
5 if pproj in triFace:
6 return true
7

8 distToPlane[3] = {triFace.DistToBisector(0,p),
9 triFace.DistToBisector(1,p),

10 triFace.DistToBisector(2,p)}
11

12 // Test if the point is in the cell of the face
13 if all distToPlane >= 0:
14 return true
15 else if not hasBoundaryEdge:
16 return false
17

18 // Is the point outside the plane of a boundary edge,
19 // and inside the planes of all non-boundary edges?
20 if (not triFace.IsBoundaryEdge(0) and distToPlane[0] < 0) or
21 (not triFace.IsBoundaryEdge(1) and distToPlane[1] < 0) or
22 (not triFace.IsBoundaryEdge(2) and distToPlane[2] < 0):
23 {
24 return false
25 }
26

27 // The point is in the region of the face
28 return true

After a point passes this check, we determine if it is within our collision envelope. When
a dynamic contact is found, the four particles and the barycentric coordinates between
the closest points are stored.

Edge-to-edge contacts also employ our InFaceRegion test, but in a slightly different
fashion. We first find the closest point between the two edges, ea and eb, using the
techniques described in Möller et al. (2008), which in turn references Rhodes (2001). 4 If
the closest points are on the edge segments, and not at any of the vertices, we examine
if the distance between the two closest points are within our collision envelope. After
establishing the distance this criteria, we check that the point of contact on ea passes our
InFaceRegion test with the available adjacent faces of eb. Similarly, we examine whether
the point of contact on eb passes our InFaceRegion test with the available adjacent
faces of ea. Only if the test pass on both sides do we create a dynamic contact for later
processing.

Certain feature pairs are purposefully omitted. A vertex should never be tested against

4In this test, we ignore the case when the closest point between edges is an end point, because that will
be covered by our vertex-face test. A separate test for when the edges are deemed parallel is also performed.
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any of its incident faces5 and two edges that share a vertex should never be tested.

13.4 Penalty Forces for Two-Way Response
For a long time in computer graphics, penalty forces have been frowned upon, and
probably still are by many. To be effective, these forces must typically have a large
magnitude, which leads to stiff systems will make explicit integrators slow or unstable.
We are using implicit integration, so this is not a concern for us. Even so, we still don’t
know the magnitude of our penalty force required to make any guarantee that it will
prevent a potential collision from occurring. If we wanted to enforce equality constraints,
our linear system would have to be augmented with Lagrange multipliers, and still
would have the problem of our constraints exhibiting sticking behavior. Handling this
properly involves solving large scale optimization problems with inequality constraints.
Solving this problem between deformable bodies has come a long way in recent years,
but the computation times remain unsuitable for our production use. Penalty forces have
served us well in practice, so we will cover some of their implementation details.

Before proceeding further, there is some convention and notation to discuss. Our
calculated response force will act in the direction of the collision normal, which we
define to point from entity b to entity a. Particles on the a and b side of the contact are
assigned signed barycentric weights w with the convention that wa ≥ 0 and wb ≤ 0. Our
penalty contact object stores the signed weights in a single array w that shares the same
ordering as the particles.6

This makes computing relative quantities between the points of contact a weighted sum.
In the case of vertex-face proximity, we assign a positive weight of one to the vertex
particle and the negative of the barycentric coordinates to face particles. We will refer
to the points of contact on each side by pa and pb. For now, let us assume that we
are not recovering from a tangled situation as described by Baraff and Witkin (2003)
and that our penalty spring is in a state of compression. We define ∆x =

∑3
i=0wixi

and ∆v =
∑3

i=0wivi. Our desired collision distance is doffset. The spring stiffness and
damping parameters, which must be positive, are ks and kd. The proximity contact
normal is defined as n̂c = ∆x

‖∆x‖ . We can now express the force acting on pa as:

fa = −[(ks(‖∆x‖ − doffset) + kd(∆v · n̂c)]n̂c. (13.1)

We deliberately chose to compute the response at pa for our vertex-face example.
Distributing the response force to the particles is a scaling of fa by the signed weight
of each particle. This follows from a simple application of the chain-rule and our sign
convention, which conveys that fb = −fa.

5The actual code comment reads: "Never collide with your own face. This is always sound advice!"
6We will see in Chapter 14 that this corresponds to multiplying by a ∂t

∂x
term (Eqn. 14.11) that appears

when taking the energy derivative.
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fi = wi ∗ fa (13.2)

We must now compute the force gradients of our spring for implicit integration. The
spatial gradient block of fa with xpa is:

∂fa
∂xpa

= −ks[n̂cn̂Tc ]− ks(‖∆x‖ − doffset)[I− n̂cn̂
T
c ] (13.3)

The full spatial force gradient for a linear spring is given in equation (13.3), but it presents
us with a problem. For a spring in compression, the second term can make our system
indefinite, as described in Choi and Ko (2002). This term filters motion orthogonal to the
direction of our spring response, so we discard it and only keep the outer product term:

∂fa
∂xpa

= −ks[n̂cn̂Tc ] (13.4)

Our signed weight convention make it easy to distribute these Jacobians to the blocks
that correspond to our particle pairs. If i and j are the indices of any two particles on in
our contact configuration then:

∂fi
∂xj

= (wiwj)
∂fa
∂xpa

. (13.5)

The same relationship naturally holds for the analogous velocity gradient block:

∂fa
∂vpa

= −kd[n̂cn̂Tc ]. (13.6)

The conventions introduced in this section make it trivial to generalize code to handle
the response for edge-edge proximity contacts, but it also generalizes further. We can
define arbitrary forces to act on any point of a mesh, distribute the forces to the mesh
particles, and distribute the Jacobians to the blocks of the linear system. Think of the
cool things you might construct with this power!

13.5 Faux Friction Effects
Accurate frictional forces are not an option for the performance requirements of Fizt.
Instead, for dynamic contacts, we allow artists to control tangential motion though a
tangential damping parameter ktd. Our tangential damping force is defined ft = −ktdvtrel
which acts opposite the direction of the relative tangential velocity. As before, we use the
signedweightsw to distribute this force to the particles involved.We add the contribution
−ktd[I− n̂cn̂

T
c ] to our velocity gradient block ∂fa

∂vpa
before distributing the weighted blocks

of the particle pairs. This approach is cheap and artist friendly, but it can never model

169



13. Collision Processing

static friction behavior because there must be some relative tangential motion present in
order for a resisting force to be applied.

Friction effects between dynamic particles and kinematic faces are handed differently.
After accumulating all the forces on each particle, if the particle has a contact with a
single kinematic face, we use the accumulated force to estimate the normal force. When
the normal force is negative, a tangential spring force is then applied. The magnitude of
this tangential spring force is set to µ

∥∥nf∥∥ to approximate dynamic friction behavior7.

13.6 Debugging Proximity Contact Detection
Writing small unit tests is highly recommended, but one might omit or misunderstand
certain cases. In addition to unit tests, I recommend developing the ability to visualize
algorithms in action. Pixar’s Universal Scene Description (USD), has proven quite useful
for this task. Fizt has the option towrite out the geometry and partition cells at sub-frames.
We also write out proximity contacts as linear curves that vary in number over time.
Using Pixar’s usdview application, this data can be inspected over time. Image (a) below
shows the partition cells on a kinematic mesh along with lines that correspond to
dynamic particle contacts with it. Image (b) shows the vertex-face and edge-edge self
contacts. Similar visualization output also exists for our continuous collision and global
intersection analysis algorithms, which will be discussed in later sections.

(a) (b)

13.7 Continuous Collision Detection
Thin and fast-moving geometry will lead to temporal aliasing issues if a simulator
relies solely on proximity queries. Instead of testing discrete states for probable contacts,
Continuous Collision Detection (CCD), determines the true collisions that occur between
two position states of our geometry. CCD techniques for deformable surfaces were first
made popular by Moore and Wilhelms (1988), Provot (1995) and Bridson et al. (2002).
A large volume of work followed over the years to make the technique more robust

7This uses an explicit guess for the normal force, and does not reflect the true normal force at the point
of contact over the time step.
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to numerical issues and to improve the performance. However, many papers on CCD
emphasize the robustness of their method and make strict guarantees that if things start
in a penetration-free state, the algorithm will reliably maintain it. It is our experience
that animation often requires things to intersect at one time or another, and that such
guarantees are impossible in practice. Also in a production environment, it is an extra
burden for the artists to guarantee a pristine initial state. In the last section of this chapter,
we will discuss how coupling CCD with the results of another algorithm can help us
handle these issues.

In Fizt, CCD is performed after we have integrated to find a new candidate position state.
CCD assumes a linear trajectory of the particles over the time step, which is conveniently
true for our Backward-Euler integrator as well. Our BVH structures enclose the mesh
primitives at both of these states. Candidate vertex-face and edge-edge pairs are then
discovered by leaf bounding-box overlaps.

The primitive test for both cases share a common idea. Using the subscripts s and e
to denote the start and end positions of a vertex, we parameterize the motion of each
vertex with respect to the variable t ∈ [0, 1] by xi(t) = (1− t)xis + t(xie). We construct a
tetrahedron from the four vertices at the begin state, and want to determine if the volume
ever goes to zero during the interval. This corresponds to all four points becoming
co-planar.

Let us first examine the vertex-face case. We define the face normal over time by:

n(t) = (x1(t)− x0(t))× (x2(t)− x0(t)) (13.7)

When n(t) · (xp(t)− x0(t)) = 0 our vertex vp is coplanar to the face.

A similar test can be made between two edges ea and eb. Each edge has a two vertex
trajectories, x0(t) and x1(t). We define the normal by:

n(t) = (xa1(t)− xa0(t))× (xb1(t)− xb0(t)) (13.8)

The equation for our test becomes n(t) · (xa0(t)− xb1(t)) = 0.

Both tests result in an equation that is, at most cubic in t. Only the real roots t ∈ [0, 1] are
of interest. Even though there is an analytic formula for the roots of a cubic polynomial,
robustly finding these roots is not easy. How small can the leading coefficient get before
the equation is considered a quadratic?When inserting roots back into the cubic equation,
what is an acceptable error? Exact boolean tests for collision have been developed by
Brochu et al. (2012) and Tang et al. (2014), and while they are recommended to avoid
missing a collision, they do not find the root needed when a collision does occur. We
recommend the analytic techniques described in Jim Blinn’s multi-part article, How
to solve a cubic equation, but found it necessary to polish our roots with a numerical
technique. The Boost math library provides an implementation of Schröder’s method,
which we’ve found adequate for this purpose. We fully acknowledge that this approach
is not as robust as other methods available in the literature.
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Geometric tests are performed for each polished root t ∈ [0, 1] in sorted order. The
position of the vertices are first advanced to the time of our candidate root t. Numerical
roundoff will likely keep the points from being "exactly" coplanar, so this should never
be assumed by the geometric test. If we determine that the point of contact lies within
our features, then we can stop our search and record the contact. Otherwise we must
check any remaining root candidates.

A good unit testing framework is always your friend, but this can be especially true
when developing algorithms can that be affected adversely by numerical errors. One
can only begin to have some confidence after procedurally testing millions of collision
scenarios that cover various scales and trajectories. Even having taken such measures for
our implementation, failures are still possible since we don’t perform the exact methods
mentioned. In the rare case of failure, another method which we will describe later will
allow us to recover in most cases.

13.8 CCD Response of a Single Collision
After CCD provides us with the collisions that occurred between candidate states, we
need to resolve these collisions. Particles that were fully constrained are considered to
have infinite mass. The vertices of kinematic geometry features can then be thought of
as fully constrained since we cannot alter their motion with our response. Instead of
operating directly on the velocities of the vertices, we alter their end positions during each
iteration of our response algorithm. Once the entire response algorithm has completed,
any particles with altered positions will have their velocity states changed to reflect this
to be consistent with these altered positions.

To resolve a single continuous collision, we will follow the notation used to described
inelastic projection described from Harmon et al. (2008). Although their work focuses
on a multiple simultaneous contacts, the math provides a compact form for resolving a
single contacts as well8. Our discussion of Harmon et al. (2008) will also vary slightly
since we choose to adjust the end positions instead of the candidate velocities. This
allows our CCD detection and response module to have knowledge of only the two
position states.

Let’s consider the vertex-face collision case. The displacement of each vertex in the
time interval is described by ∆xi = xe − xs. Let’s describe the displacement of all the
vertices involved in a collision by the configuration space vector q. We define a scalar
constraint equation to describe the normal relative displacement of our contact points in
equation (13.9). We orient the collision normal at the time of impact, n̂c, so that equation
C(q) < 0 since we know the relative normal motion must be negative for a collision to
occur.

8When processing a single contact, these expressions might appear intimidating, but they reduce to
simple summations.
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C(q) = n̂c · [∆x1 − (u∆x2 + v∆x3 + w∆x4)] (13.9)

The gradient wrt. q of our constraint equation becomes:

∇C = [n̂c,−un̂c,−vn̂c,−wn̂c] (13.10)

Continuing the derivation in Harmon et al. (2008), we arrive at equation (13.11). The
right hand side describes the desired change wewant in the normal relative motion. Once
we solve for λ, we update our end positions with equation (13.12). Hard constraints from
our dynamics solution can be respected, by multiplying M−1 with Si and incorporating
it into both of these equations9.

∇CM−1∇CTλ = ∇Cq (13.11)

x′ie = xie −M−1∇CTλ (13.12)

At this point, all normal relative motion between the points in contact will vanish. Let
xs be a vector of the vertex start positions and ds = ∇Cxs define the initial relative
normal distance. We want all relative normal motion to stop when ds ≤ doffset. When
ds > doffset we must alter the RHS of equation (13.11). If we want the relative normal
motion to stop at doffset, we want a post-correction normal displacement magnitude =
doffset − ds. The desired change between our pre-correction and post-correction normal
displacementmagnitude defines our right hand side and is given by∇Cq+∇Cxs−doffset.
I do not recommend modifying the RHS for trying to achieve post-correction normal
offset greater than the initial one. Compensating for the collision offset would add
energy, and it is probably best to model a fully dissipative response for deformable
bodies. Applying inelastic projection to handle edge-edge collisions is straightforward.
If multiple simultaneous contacts are found, this can be extended to to the technique in
Harmon et al. (2008). It would result in a linear system of size Nc ×Nc where Nc is the
number of simultaneous contacts.

13.9 Resolving CCD Collisions in Chronological Order
In a single time step, there can be many collisions between our two position states, but
one cannot process them all at once. Some of the found collisions won’t occur if others are
resolved first and new collisions can be formed by the resolution of others. We present a
summary of our resolution scheme in the pseudo-code below:

9If the point of contact on both sides is closer to the constrained particles on each side than the
unconstrained ones, the resulting deformation from the response can be quite large. Special care must be
taken in these situations.
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1 bool HandleContinuousCollisions(CollisionDetector , maxIters)
2

3 CollisionDetector ->DetectInitialCollisions()
4 collisions = CollisionDetector ->GetResults()
5 iter = 0
6 bool collisionFree = true
7 bool allRegionsResolved = false
8 if not collisions.empty():
9 collisionFree = false

10 GatherCollisionsPerDynamicVertex(collisions)
11 CreateContactRegions(collisions)
12

13 while !collisionFree and iter < maxIters:
14 // Solve first contacts in each disjoint regions
15 // and update the end position state marking
16 // incident mesh features for the BVH update.
17 SolveContactRegions()
18 iters++
19 allRegionsResolved = AreAllContactRegionsCollisionFree()
20 // Steps for incremental detection
21 CollisionDetector ->UpdateBVHsWithMarkedFeatures()
22 CollisionDetector ->PerformIncrementalDetection()
23 CollisionDetector ->GetResults(newCollisions)
24

25 // Determine whether collisions in newCollisions
26 // are genuinely new or are already represented
27 // in the contact regions. Remove already discovered
28 // collisions from newCollisions.
29 ProcessContacts(newCollisions)
30 if not newCollisions.empty():
31 // Contact regions may just expand
32 // or expand and merge with others
33 ExpandAndMergeContactRegions(newCollisions)
34 else if allRegionsResolved:
35 collisionFree = true
36

37 return collisionFree

HandleContinuousCollisions takes in our collision detection module and a maximum
number of iterations to perform. We perform the initial collision detection pass in line 3.
If any collisions were found, we gather the collisions per dynamic vertex and store them
chronological order in line 10. We create groups of contacts, called ContactRegions, that
are connected by shared vertices including ones with kinematic geometry. We compute
and apply our response for the earliest contacts in each region in SolveContactRegions
on line 17. Contact regions are solved independently in parallel each iteration. After
applying the response, AreAllContactRegionsCollisionFree sweeps over the contact
regions to see if all of their contained contacts have been resolved. When a collision in
the region still occurs we update its Time of Impact(TOI), and barycentric coordinates.

Even when AreAllContactRegionsCollisionFree indicates all of our contacts have
been resolved, we are not done because the response may have generated new collisions.
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In lines 20-23 an incremental detection pass is then performed to discover any new
contacts. Our incremental detection consists of first marking all the leaf level nodes of
our BVHs as clean, and then labeling the nodes that contain a feature with a vertex that
has moved by the last response iteration as dirty. We propagate the dirty flag up the tree
from the leaves when updating the BVH extents. During the incremental detection pass
we can then ignore descending down any pairs that are both clean.

Inside ProcessContacts, line 27, we examine if the additional contacts should cause
contact regions to be expanded or merged. A new collision should always fall into either
of those categories. It is the responsibility of the ContactRegions to keep the unresolved
collisions they contained in chronological order. We then repeat this process until all
the collisions have bee resolved or we have exceeded our maxIters. A dynamic vertex
being pinched between two opposing kinematic surfaces sometimes cannot be resolved
with this method. We will discuss our remedy to that problematic situation and others
in §13.10.

If all collisions have not been resolved by maxIters, the inelastic projection described in
Harmon et al. (2008) can be used to halt all normal relative motion in a contact region.
This extra failsafe method is a good idea for systems that do not implement a means for
recovery. Fizt has a means of recovery for some intersection cases, which will begin to
discuss shortly. While CCD and the associated response can make sure collisions aren’t
missed due to temporal aliasing, there is one drawback. The response is completely
decoupled from the dynamics of the material model and excessive deformation may
occur as a result.

13.10 Global Intersection Analysis
Character animation often leads to situations where the kinematic geometry intersects
leaving the simulated surface nowhere to go and can easily lead to constrained situations
that can cause it to intersect. To handle these situations, the Flypapering technique
was introduced in the Untangling Cloth paper Baraff and Witkin (2003) 10. The Global
Intersection Analysis, (GIA) algorithm was also introduced in this paper, which we
continue to rely heavily on. We give a brief summary of the GIA algorithm in this section
and discuss its application to proximity and CCD in section §13.10.

Edge-face intersection pairs are first found using our BVH. Closed contours of intersection
are then computed by traversing the intersections and using mesh connectivity. A flood-
fill algorithm then colors the regions on both sides of each contour. The GIA algorithm
makes the reasonable assumption that the region with the smaller area is the region of
intersection, though this is certainly not true in pathological cases. The algorithm also
does not support surfaces that are non-manifold. Since not all intersection configurations
lead to a closed contour of intersection, we still label the mesh features that are involved
in intersection.

10As previously noted we now run a volume simulation to deform the character geometry, Wong et al.
(2018), before running cloth to remove a majority of Flypapering cases.
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Figure 13.4.: An example the information GIA produces. Left to right: Two intersecting
meshes. The intersection contour. The minimum colored area discovered by
the flood fill.

13.11 Using GIA with Proximity and CCD
Fizt performs GIA before proximity queries and CCD. GIA is applied to all mesh pairs in
the simulator, including the kinematic meshes. We also apply it to the kinematic meshes
at the end of the time step.

Kinematic objects are assumed to have meshes that are oriented and closed. When a
particle of a deformable body is detected beneath the surface of a kinematic object, a
natural first response would be to push it to the desired collision offset of the face it is
underneath. When objects are thin or penetrations are deep, this can easily result in the
particle being pushed out the wrong side of the surface. This will lead to tangling from
which a simulation would rarely ever recover. To alleviate this issue, we look to see if the
face we plan to eject through has been labeled as being in a GIA contour, or is a part of
an intersection. Only if it is labeled do we deliver the response. This heuristic will not
handle all cases, but in practice, particles closer to the intersection region are pushed
out first. That response then causes connected particles that are in deeper penetration to
emerge from the correct side of the surface.

When two dynamic surfaces are intersecting, we use the GIA coloring information to
change our penalty response. In the case of cloth, we do not have a notion of an inside
and outside. When a colored particle has a proximity contact with a face of the same
color, we instruct our penalty force to pull it through to the appropriate offset distance
on the other side. This follows the approach to untangling cloth intersections described
in Baraff and Witkin (2003).

The untangling response just described will be thwarted by our CCD pass unless it also
uses information from GIA. When CCD discovers a contact between two surfaces that
have been labeled to be in intersection by GIA, we ignore the collision so that it will not
prevent the penalty response from resolving the situation. Once the GIA intersection
is resolved, CCD can do its best at preventing intersection from recurring. By coupling
GIA with CCD we can safely allow for recovery without compromising the robustness
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of our CCD with any local heuristics11.

There can be scenarios where a dynamic contact cannot be resolved, because it is trapped
between kinematic surfaces that are passing through each other. We use the kinematic
intersection states of the kinematic object to ignore continuous collisions that involve
kinematic features that are pinched, becoming pinched, or becoming unpinched.

Instead of attempting to engineer a collision strategy that is never allowed to fail, Fizt
has taken an approach of assuming failure is inevitable in the face of production work.
What is important is to have the ability to recover from any failures gracefully. While
our implementations of GIA, proximity queries and continuous collision could be more
robust, by working together they are able to handle many demanding production
scenarios.

13.12 Things Not Covered
Fizt has evolved at Pixar over 20 years and there are many features and topics that have
not been discussed. The list that follows is far from complete but is meant to provide
some more information and perspective.

• Many custom implicit forces and constraints exist to give the artists complex control
during asset tailoring and shot work.

• We have many controls to change the rest shape of the cloth over time to deal with
drastic character stretch/squash and to help facilitate wrinkles in certain regions.

• Particle masses are not constant to support a consistent look despite drastic changes
rest shape area. This is one reason why some newer and faster techniques that
exploit a single system factorization are not applicable to us.

• Our cloth material model is rooted in Baraff and Witkin (1998), but has become
more complex to allow the artists the control they’ve needed to provide a wide
variety of looks over many films.12

• Fizt has the ability to cope with fast motion by dialing in the amount of rotation
and translation experienced by the simulation relative to the motion of a frame on
the character.

There are still a lot of robustness and performance improvements that can be made
to Fizt and for many it may seem that we are slow to adopt the latest advances in the
literature. If physical accuracy was our primary goal, then this would certainly be true.
Our production work however prioritizes stability13, speed and artist directability above
physical accuracy. Only physical plausibility is required.

11Many were tried before discovering GIA is a far more robust approach.
12Perhaps in future versions of this course we will discuss it in detail.
13Numerical stability as well as code stability.
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There is a lotmore to our simulation pipeline than the simulator itself. Our tailoring/asset
creation tools exist in Maya, but have had many years of custom development which is
still ongoing. Our pre-roll system to simulate characters into their shot pose is another
tool that our artists constantly rely on. To evolve and support a system this large requires
the hard work of many people from Pixar’s Tools-Sim and Research teams.
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Chapter 14

Collision Energies

14.1 What Energies?
We’ve seen a few penalty forces you can apply between vertex-face and edge-edge
collisions in §13.4. Usually these take the form of compute the force, then, like, y’know, spread
them out to the vertices. This isn’t quite keeping with the philosophy of the rest of these
course notes, where we wrote down an energy first, and then computed some derivatives
to obtain a force. Let’s do that now.

An energy-based approach to collision penalty forces is entirely possible, and can
illuminate what’s really going onwhen just staring at the forces doesn’t get you anywhere.
Let’s take a closer look at some possible collision energies, and the forces that arise from
them. These are described here and included in the HOBAK source code for experimental
and pedagogical purposes. But for reasons we will see not all of these are in Fizt.

There’s going to be a bunch of calculus slug-festing in the following pages, but reader
beware: just because the derivatives are complicated and fancy-looking doesn’t always mean
they’re better.When we finally arrive at the actual energies used in Fizt, you might pull
your hair out.

14.2 A Vertex-Face Energy

14.2.1 A Position-Based Energy

Let’s look at the collision energy fromMcAdams et al. (2011). It’s a spring energy defined
in world-space as:

ΨMc(xp,xs) = k(xp − xs)
TN(xp − xs). (14.1)
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Here, the point xp is the vertex in collision, and xs is the closest point on the colliding
triangle1 (see Fig. 14.1). The matrix N is the outer product of the normal of the colliding
triangle, N = nnT .

 

 

Figure 14.1.: On the left, the vertex-face collision configuration. In the middle, this is
how we’ll label the vertices. The vertices on the face are ordered clockwise.
On the right, we can use this ordering to compute a normal for the face.

There’s four vertices involved in this collision. Let’s label the vertex in collision as x0,
and the triangle in collision as the vertices x1,x2,x3. We also assume that the triangle’s
vertices are arranged in clockwise order. We can then write the point xs on the colliding
triangle in terms of the barycentric coordinates (α,β, γ):

xs = αx1 + βx2 + γx3. (14.2)

The normal can also be defined using this vertex ordering:

e0 = x3 − x2 (14.3)
e1 = x0 − x2 (14.4)
e2 = x1 − x2 (14.5)

n =
e2 × e0

‖e2 × e0‖
. (14.6)

Hey wait a minute, since when do we define energies in terms of xp and xs instead of F?
You caught me. I don’t have the F-based version of this energy in hand yet. It should be
possible to define this2, but it’s not there yet, and it’s not what’s listed in McAdams et al.
(2011), so let’s just go with the x-based version for now. You should expect a calculus
slug-fest ahead.

1Revisiting the original McAdams et al. (2011) paper, I now see that I reversed these two labels by
accident. The xp is the “proxy” point on the triangle, and the xs is the vertex in collision. As we’ll see in
§14.3, I find this whole energy vaguely irritating, so I am NOT FIXING THE LABELS.

2Sounds like a good project for a graduate student.
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14.2.2 What’s the Energy Doing?

It’s a little easier to see what this energy is doing if we define the direction

t = x0 − αx1 − βx2 − γx3. (14.7)

The collision energy is then taking this direction, and extracting the component that is
normal to the triangle, i.e. see tTn in Fig. 14.2. We want to push the vertex and triangle
apart, and nothing else. If the vertex and triangle want to slide tangent to each other,
they should be welcome to do so. Don’t insert any forces that impedes any perfectly
acceptable sliding behavior. An entirely equivalent energy is then:

ΨMc(xp,xs) = k(tTn)2. (14.8)

We’re actually going to use this form of the energy instead, because it organizes the
derivatives a little more cleanly. 

Figure 14.2.: The energy 14.1 is taking the difference t = xp − xs and extracting the part
that lies along the triangle normal n.

14.2.3 The Collision Force

Let’s go ahead and take the derivative, which in turn will give us the collision force.
Since we labelled all the vertices in terms of some xi, we can now define the <12 vector:

x =


x0

x1

x2

x3

 (14.9)

The derivative them becomes:

∂ΨMc(xp,xs)

∂x
= 2k

(
tTn

)[ ∂t
∂x

T

n +
∂n

∂x

T

t

]
. (14.10)
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The ∂t
∂x term is the easy one, and has a relatively simple form:

∂t

∂x
=

I3×3 −αI3×3 −βI3×3 −γI3×3

 ∈ <3×12. (14.11)

The C++ implementation is also straightforward:
1 ///////////////////////////////////////////////////////////////////////
2 ///////////////////////////////////////////////////////////////////////
3 MATRIX3x12 MCADAMS_BARY_COLLISION::vDiffPartial(const VECTOR3& bary)
4 {
5 MATRIX3x12 tPartial;
6 tPartial.setZero();
7 tPartial(0,0) = tPartial(1,1) = tPartial(2,2) = 1.0;
8 tPartial(0,3) = tPartial(1,4) = tPartial(2,5) = -bary[0];
9 tPartial(0,6) = tPartial(1,7) = tPartial(2,8) = -bary[1];

10 tPartial(0,9) = tPartial(1,10) = tPartial(2,11) = -bary[2];
11
12 return tPartial;
13 }

In contrast, the ∂n
∂x term is known as the normal derivative or normal gradient, a term that

is so excruciatingly painful to compute that it has sent many a student screaming for
the hills, racing off to find a monastery/nunnery/gender-neutral temple where they
can spend their remaining days trying to scar over the mental claw-marks exacted by
this terrifying term. Or, sometimes they ignore the term entirely and hope for the best,
spending the rest of their days wondering if every simulator instability they encounter
can be traced back to that one time, years ago, when it came time to stand up to that
terrifying ∂n

∂x term, and their courage failed.

Fortunately, I have worked this term out for you in Appendix I. With all these terms in
hand, the force vector itself is computed as

f = −a∂ΨMc(xp,xs)

∂x
, (14.12)

where a denotes the area of the collision, which we set to the rest-state area of the triangle,
and 1/3 the rest-state area of the all the triangles in the one-ring of the colliding vertex.
There’s a negative in front of the whole thing, because remember the force is always the
negative gradient of the energy.

This produces a vector f ∈ <12, which is the force at each of the four vertices, all stacked
all together, and needs to be cut up and distributed to each of the involved vertices. This
can all be seen in action in the function:

TET_MESH::computeVertexFaceCollisionForces(const REAL& collisionStiffness)
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14.2.4 The Collision Hessian

Now we come to the sticky part, and have to compute the Hessian of the collision energy.
Just to keep things from running off the end of the page, let’s define a gradient term,

g =
∂t

∂x

T

n +
∂n

∂x

T

t ∈ <12. (14.13)

Pushing forward with the derivatives, we then get

∂2ΨMc(xp,xs)

∂x2
= 2k

ggT + tTn

( ∂2t

∂x2

)T
n + tT

∂2n

∂x2
+
∂t

∂x

T ∂n

∂x
+
∂n

∂x

T ∂t

∂x


 .

(14.14)
Since ∂t

∂x was just a bunch of constants, it must be the case that ∂2t
∂x2 = 0. Thus, the Hessian

simplifies to:

∂2ΨMc(xp,xs)

∂x2
= 2k

ggT + tTn

(
tT
∂2n

∂x2
+
∂t

∂x

T ∂n

∂x
+
∂n

∂x

T ∂t

∂x

) . (14.15)

We have everything needed for this expression in hand, except for the ∂2n
∂x2 term. Oh, it’s

never easy, is it? First you slay Grendel, and then around the corner comes his mom,
Angelina Jolie. Don’t worry. It’s okay. I did it for you.

The normal Hessian is described in grisly detail in the second part of Appendix I. Now
you have a <12×12 matrix to dice up and distribute into the global matrix. You can see
this all in action in the function:

TET_MESH::computeVertexFaceCollisionClampedHessian

14.3 Another (Better? Identical?) Vertex-Face Energy

14.3.1 Another Position-Based Energy

Something irritates me about the ΨMc(xp,xs) energy (sorry Alex, nothing personal,
reasonable people can disagree, right?). Why do we even need some xs that is a
barycentric combination of x1,x2 and x3?

Why can’t we just use the closest point to xp on the triangle (let’s call it xt)? If we use the
distance between xp and the closest point for our spring, it still seems pretty much like
Hooke’s Law, right? I drew it all out in Fig. 14.3 if you’re still not following.

It takes a little effort to get the point xt, but we’ll see that by the time we get to the energy,
everything will simplify nicely. Projecting xp onto the triangle spanned by x1,x2,x3 is

183



14. Collision Energies

 

Figure 14.3.: Instead of using some barycentric-coordinate-defined point xs (left), why
not find the closest point xt on the triangle (right), and just use that?

some straightforward vector arithmetic:

xt = xp −
(
nT (xp − x2)

)
n (14.16)

= x0 −
(
nT (x0 − x2)

)
n. (14.17)

Treating this as our xs in theMcAdams et al. (2011) energy (but no barycentric coordinates
needed!) we start with something messy, but it cleans up nicely:

Ψvf(x) = k(xp − xt)
TnnT (xp − xt)

= k

(
x0 −

(
x0 −

(
nT (x0 − x2)

)
n

))T
nnT

(
x0 −

(
x0 −

(
nT (x0 − x2)

)
n

))

= k
(
nT (x0 − x2)n

)T
nnT

(
nT (x0 − x2)n

)
= k

(
nT (x0 − x2)

)2
nTnnTn

In the last line, since nTn = 1, we can simplify one last piece to get our final energy:

Ψvf(x) = k
(
nT tvf

)2
(14.18)

tvf = (x0 − x2) (14.19)

This ... is actually really close to Eqn. 14.8. We can even think of it like we just decided
to use the barycentric coordinate (α,β, γ) = (0, 1, 0) every single time. The dot product
against n, will always project off any component that’s not normal to the triangle, so it
actually doesn’t matter what (α,β, γ) we use.3 If we just pin it to one thing, and then we
don’t have to mess around with (α,β, γ) at all.

Everything then becomes ever-so-slightly simpler.
3Well, you can still use something dumb like (α,β, γ) = (0, 0, 0) and get yourself in trouble. It doesn’t

matter what valid barycentric coordinate you use.
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14.3.2 The Collision Force

The force then becomes slightly simpler. Taking the derivative, we get:

∂Ψvf(x)

∂x
= 2k

(
tTvfn

)[∂tvf
∂x

T

n +
∂n

∂x

T

tvf

]
. (14.20)

The ∂tvf
∂x term is now slightly simpler than the ∂t

∂x term in Eqn. 14.11, since we can just
freeze it to (α,β, γ) = (0, 1, 0). We get:

∂tvf
∂x

=

I3×3 0 −I3×3 0

 ∈ <3×12. (14.21)

Everything else, like the ∂n
∂x term, is exactly the same as before.

14.3.3 The Collision Hessian

Everything rolls forward with the Hessian as well. We define another gradient term,

gvf =
∂tvf
∂x

T

n +
∂n

∂x

T

tvf ∈ <12, (14.22)

and plug it into the full Hessian

∂2Ψvf(x)

∂x2
= 2k

gvfgTvf + tTvfn

(
tTvf
∂2n

∂x2
+
∂tvf
∂x

T ∂n

∂x
+
∂n

∂x

T ∂tvf
∂x

) .

No new terms appeared, except for the ∂tvf
∂x that is slightly simpler than ∂t

∂x , and so we’re
all done. The moral here is that if you’re doing the proxy-point sprinkling in McAdams
et al. (2011), go ahead and use ΨMc. If you’re just trying to get a vanilla vertex-face
collision energy though, I don’t see any reason not to use the simpler Ψvf.

14.4 Non-Zero Rest-Length Vertex-Face Energies
So far, the two energies we’ve seen have assumed that you want a zero rest-length. This
isn’t true in general though. Often you want some small air gap in between your collision
so that stuff like clothing can slip through (see Wong et al. (2018)), or just so that stuff
isn’t visually inter-penetrating as much.

Fortunately, adding a small non-zero rest-length ε to all the preceding energies is

185



14. Collision Energies

straightforward. Without further ado, here it is for the McAdams et al. (2011) energy:

ΨMc(xp,xs) = k
(
tTn− ε

)2
(14.23)

∂ΨMc(xp,xs)

∂x
= 2k

(
tTn− ε

)[ ∂t
∂x

T

n +
∂n

∂x

T

t

]
(14.24)

∂2ΨMc(xp,xs)

∂x2
= 2k

ggT +
(
tTn− ε

)(
tT
∂2n

∂x2
+
∂t

∂x

T ∂n

∂x
+
∂n

∂x

T ∂t

∂x

) . (14.25)

And equivalently, here it is for our Another-Better-Identical energy:

Ψvf(x) = k
(
tTvfn− ε

)2
(14.26)

∂Ψvf(x)

∂x
= 2k

(
tTvfn− ε

)[∂tvf
∂x

T

n +
∂n

∂x

T

tvf

]
(14.27)

∂2Ψvf(x)

∂x2
= 2k

gvfgTvf +
(
tTvfn− ε

)(
tTvf
∂2n

∂x2
+
∂tvf
∂x

T ∂n

∂x
+
∂n

∂x

T ∂tvf
∂x

) . (14.28)

CompleteC++ implementations of these are available in theHOBAK classesMCADAMS_COLLISION
and VERTEX_FACE_COLLISION.

Sure looks like these two energies are functionally the same. I dropped an elastic E in
HOBAK using both of them, and they produced the same result. You can see in Fig. 14.4.

14.5 The Actual Vertex-Face Energy Used in Fizt

14.5.1 Just To Drive You Crazy

Just to drive you crazy, I’m now going to casually mention that neither of the energies
we went over are actually in Fizt. The energy corresponding to the penalty force used in
production is actually this one4:

Ψ√vf =
k

2
(‖t‖ − ε)2 (14.29)

t = xp − xt. (14.30)

Whaaat. There’s no triangle normal anywhere in this energy! What was the point of all
these difficult derivatives we just saw! The gradient then works out to:

∂Ψ√vf
∂x

= k(‖t‖ − ε) t

‖t‖
∂t

∂x

4I’ve labelled constants to be consistent with this chapter, not Chapter 13, so the namings won’t line up
completely.
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(a) Original E (b) Timestep 105, ΨMc (c) Timestep 375, ΨMc

(d) Original E (e) Timestep 105, Ψvf (f) Timestep 375, Ψvf

Figure 14.4.: Dropping an E-shaped mesh on the ground, using the vertex-face collision
energies ΨMc and Ψvf. Do you see a difference? I don’t, even when I flip
between the two in Photoshop. Pretty sure the energies are identical.

Compare this to the spring force portion of Eqn. 13.1 (without damping), which I’ve
reproduced here for your convenience:

fa = −(ks(‖∆x‖ − doffset)
∆x

‖∆x‖
. (14.31)

It’s the same, except for the negative in front5, and the ∂t
∂x matrix on the end, which

serves as the let’s spread the force out to the verticesmultiply.6

It’s just a spring force between our vertex and the collision point on the triangle. Our
original objection to this style of energy is that you only want the penalty force to push

5Remember we multiply ∂Ψ√
vf

∂x
by negative area to get the force.

6If you’re a big fan of McAdams et al. (2011), you might remember that their complete energy was
Ψ = k(xp − xs)

T
(
(1− α)N + αI

)
(xp − xs), and have a sneaking suspicion that Ψ√vf corresponds to the

α = 1 case. If you look closer, ΨMc never takes the norm of t, so there’s a square root missing. They’re close,
but not quite the same.
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in the normal direction. Like I said when we first formulated the ΨMc energy, you can get
otherwise get additional non-physical stickiness in the surface tangent directions, which
isn’t really the behavior we want.

This is certainly a valid objection, but in practice, this artifact doesn’t seem to appear
all that much. We conjecture that this is because each force only appears for the span
of a single timestep, after which we run another proximity query, and the xt point gets
updated. Without a consistent xt direction to apply the non-physical stickiness in, the
artifact is much less visible. Your mileage may vary, especially if you decide to use really
humungous timestep sizes, but this is what we’ve seen in production. Fortunately, HOBAK
has all of these energies implemented, so if you start seeing stickiness, you can always
just toggle to a different energy to see if that’s the culprit.

One situation where it does makes intuitive sense to use Ψdiff instead of ΨMc is when
the vertex-face collision is essentially a vertex-edge collision (Fig. 14.5, left). In this

 

Figure 14.5.: If the collision vertex xp is not above the triangle, xt lies on an edge, and it
becomes a vertex-edge collision (left). In that case, which direction should
be push? Still along the normal direction (middle)? Seems a little weird.
Why not just in the direction of the difference, (xp − xt) (right)?

vertex-edge case, should we still just push in the normal direction, which hovers weirdly
in a no-man’s land outside the triangle (Fig. 14.5, middle), or should we just push in the
(xp−xt) direction (Fig. 14.5, right), which does what we want, and just pushes the vertex
and face apart? The last one does seem appealing.

The Hessian works out to something grisly-looking:

∂2Ψ√vf
∂x2

= k

( 1

tT t
− ‖t‖ − ε

(tT t)
3
2

)
ggT +

‖t‖ − ε
‖t‖

∂t

∂x

T ∂t

∂x


g =

∂t

∂x

T

t.
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14.5.2 There’s A Reversal Problem

The Ψ√vf energy has a problem that’s very similar to ΨASqrt from Chapter 8. Since it
primarily consists of a ‖t‖ =

√
tT t term, it squares away the direction, and then just

assumes that everything should be positive when it then takes the square root. This is
not a good assumption!

If the colliding vertex has not yet penetrated the face, then the force’s direction is just
fine (Fig. 14.6, left), and this direction will push the vertex and face apart. However, if
the vertex and face have already collided, and the vertex is inside the volume (Fig. 14.6,
middle), then pushing the vertex and face further apart will push the vertex deeper into
the model, making the collision worse. In this case, you want to reverse the direction of
the force, and have the vertex and face attract each other, until the two are no longer in
collision (Fig. 14.6, right). Then you can start repulsing again. All this can be accomplished 

Figure 14.6.: If the collision vertexxp has not alreadypassed through the triangle, pushing
the vertex and face apart works just fine (left). If xp has already penetrated
into the triangle though, this will push xp deeper into the volume, making
the collision worse (middle). In this case, reverse the direction and have the
vertex and face attract each other until the collision has been untangled.

by switching a minus to a plus in the energy:

Ψ−√
vf

=
k

2
(‖t‖+ε)2 (14.32)

∂Ψ−√
vf

∂x
= k(‖t‖+ε) t

‖t‖
∂t

∂x
(14.33)

∂2Ψ−√
vf

∂x2
= k

( 1

tT t
− ‖t‖+ε

(tT t)
3
2

)
ggT +

‖t‖+ε
‖t‖

∂t

∂x

T ∂t

∂x

 (14.34)

The decision to invoke the Ψ−√
vf
or Ψ√vf energy can be determined using a normal test:

compute the normal of the colliding triangle, and see if the colliding vertex has a positive
or negative projection onto it. The implementation of this test can be found in bool
VERTEX_FACE_SQRT_COLLISION::reverse.
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The Ψ√vf energy is definitely not equivalent to Ψvf or ΨMc, since there’s no normal
filtering. The results can be qualitatively similar, but you can see the difference in Fig. 14.7.

(a) Original E (b) Timestep 105, Ψvf (c) Timestep 375, Ψvf

(d) Original E (e) Timestep 105, Ψ√vf (f) Timestep 375, Ψ√vf

Figure 14.7.: Dropping an E-shaped mesh on the ground, using the vertex-face collision
energies Ψvf and Ψ√vf. The energies are clearly not exactly the same, though
they give the same overall behavior.

14.6 An Edge-Edge Energy

14.6.1 The Collision Energy

Vertex-face collisions are great, but they’re only half of the story. If you only handle this
type of collision, some irritating artifacts will slip on past, particularly when simulating
cloth.7 To get a fuller story, let’s take a look at edge-edge collision energies as well.

If you have two close-together edges that you want to push apart, you need to pick a

7All that said, edge-edge collisions didn’t appear in a Pixar movie until Coco (2015), so you can still make
movies without it. Your artists might be doing a lot of dirty, expensive, behind-the-scenes clean-up though.
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direction to push. There’s no triangle involved, so taking its normal and setting that as
the direction is out of the question. A bunch of papers (e.g. Provot (1997); Harmon et al.
(2008); Wang (2014); Han et al. (2021)) propose taking the cross product between the two
edges and using that as the more-or-less normal direction. That sounds fine. Let’s go
with that. This does mean that once again our ugly foe the normal derivative will rear its
horrid head, but that’s okay, the tools we used to tame it before can be used again.

Let’s take a look at this cross-product-based edge-edge collision energy:

Ψe×e = k ·
(
ε+ (xb − xa)

Tn
)2

. (14.35)

The variable ε has the same meaning as the non-zero rest-length from §14.4. To make
sense of the rest, we need to define a few geometric quantities:

xa = a0x0 + a1x1

xb = b0x2 + b1x3

n = e1 × e0

e0 = x1 − x0

e1 = x3 − x2.

The points xa and xb are the two closest points between the two edges, computed using
the (a0, a1) and (b0, b1) coordinates returned by the line intersection test of Rhodes
(2001).8 I drew the whole thing out for you in Fig. 14.8.

 

Figure 14.8.: Here’s the geometry of edge-edge collisions. We have two edges, (x0,x1)
and (x2,x3), and the closest points between them are xa and xb (left). We
can define the directions of the edges as e0 and e1 (middle). The normal
direction, i.e. the direction in which we want to apply the force, is then
e1 × e0 = n (right).

8I found the source here:
https://github.com/UG4/ugcore/blob/master/ugbase/common/math/misc/lineintersect_utils.cpp.
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14.6.2 The Collision Gradient

Let’s take the gradient and see what hideousness it reveals:

∂Ψe×e
∂x

= 2k
(
ε+ (xb − xa)

Tn
)[∂xb − xa

∂x
n + (xb − xa)

∂n

∂x

]
. (14.36)

This is not bad. Only two new terms emerged, and they’re not that new. First, a difference
matrix that looks a whole lot like ∂t

∂x from the vertex-face case:

∂xb − xa
∂x

=

−a0I3×3 −a1I3×3 b0I3×3 b1I3×3

 . (14.37)

Second, our old frenemy ∂n
∂x also makes an appearance. But that’s okay, we already

figured this out for the vertex-face case, right? Noooot exactly. In the vertex-face case,
we were computing the normal of a triangle, which involved three vertices. In this case,
the normal is computed using two independent edges, which involves four vertices. A
bunch of the indices change, and some entries that were zero now become non-zero, but
nothing fundamentally new shows up if you just follow the same process as before.

At any rate, I worked it all out for you in the back half of Appendix I. Just remember to
plug the code from Fig. I.10 into the ∂n

∂x term, not the code from Fig. I.4.

14.6.3 The Collision Hessian

Now let’s push ahead with the Hessian. Similar to the vertex-face case, it helps to define
a gradient term:

ge×e =
∂(xb − xa)

Tn

∂x
=
∂xb − xa

∂x

T

n +
∂n

∂x

T

(xb − xa) . (14.38)

The complete Hessian then becomes:

∂2Ψe×e
∂x2

= 2k

ge×egTe×e +
(

(ε+ xb − xa)
T n
)(

(xb − xa)
T ∂

2n

∂x2
+
∂ (xb − xa)

∂x

T ∂n

∂x
+
∂n

∂x

T ∂ (xb − xa)

∂x

) .

In the end, it’s not actually that different from the vertex-face Hessians, if you compare
them term-by-term. Line it up against Eqn. 14.28, for example. The only complication is
the ∂2n

∂x2 term, which is slightly different in the edge-edge case, but I’ve already worked
it out for you (again) in Appendix I (again). This time, remember to use the code from
Fig. I.12 in the ∂2n

∂x2 term, not the code from Fig. I.8. All done.
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14.6.4 You Have to Reverse It Sometimes

Just like with the Ψ√vf energy with vertex-face collisions, sometimes you have to reverse
the direction of edge-edge collision forces.

In the edge-edge case, if two edges are so close together that they’re actually intersecting
the surrounding triangles, things can go badly wrong. Similar to the vertex-face case,
instead of pushing the two edges apart in this situation, you want to push the two edges
together. Once the triangles are no longer in intersection, then switch back to pushing the
edges apart. These two scenarios are shown in Fig. 14.9.

 

Figure 14.9.: Similar to the vertex-face cases in Fig. 14.6, if the triangles adjacent to the
two edges are not in collision, you can just apply a force that repulses the two
edges (left). You shouldn’t do that if the triangles are overlapping (right).
In that case, pushing the edges apart will make things worse, and cause the
triangles to overlap even more. Instead, let’s reverse the force direction, and
have the two edges attract each other. Once the triangles stop overlapping,
switch back to repulsion.

Fortunately, this can again be accomplished by just flipping the signs in a bunch of places
in the energy and its derivatives:

te = (xb − xa)

Ψ−e×e = k ·
(
ε−tTe n

)2

∂Ψ−e×e
∂x

= −2k
(
ε−tTe n

)[∂te
∂x

n + te
∂n

∂x

]
∂2Ψ−e×e
∂x2

= −2k

ge×egTe×e +
(

(ε−te)T n
)(

tTe
∂2n

∂x2
+
∂te
∂x

T ∂n

∂x
+
∂n

∂x

T ∂te
∂x

) .

For this reason, the EDGE_COLLISION class has both gradient and gradientNegated func-
tions, as well as hessian and hessianNegated functions. During collision detection in
TET_MESH::computeEdgeEdgeCollisions, if two edges are found to be within proximity
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of each other, edge-triangle intersection tests are also run to see if the triangles are overlap-
ping.When it comes time to compute the forces inTET_MESH::computeEdgeEdgeCollisionForces(),
the appropriate function is then selected.

14.7 The Actual Edge-Edge Energy Used in Fizt

14.7.1 A Fly in the Ointment

You may have already noticed something troubling about Ψe×e. What happens if the two
edges are really close to parallel, so close that their cross-product becomes undefined?
What if e0 and e1 end up right on top of each other in Fig. 14.8? Uuuuuhhh well maybe it
doesn’t happen that much in practice? Or maybe we’re just being obsessive, and in reality
unless the two edges are exactly parallel to each other, everything works out just fine?

Unfortunately, that is not the world we live in. In fact, the cross product starts going
haywireway before the two edges are exactly parallel. Other people have had to deal with
this. Han et al. (2021) filters off edge-edge contacts that are less than 10 degrees apart.
Harmon et al. (2008) ignore parallel edges9, arguing that there’s probably a vertex-face
collision happening nearby that will handle things. There’s a core irritation at the center
of this all though: after all that work making sure we got the normal derivative right,
there’s a geometric degeneracy at the center of it all?

14.7.2 The Fizt Energy

We’re going to use an energy here that is very similar to the vertex-face energy from §14.5,
and doesn’t contain this geometric degeneracy. Here it is:

Ψ√ee = µ(ε− ‖te‖)2 (14.39)
te = (xb − xa). (14.40)

Instead of computing a normal anywhere, we’re just going to push the two closest points
apart (Fig. 14.10). You might have the same misgivings here as you had for the energy
in §14.5. Don’t we want a force that only pushes in some “normal” direction? Won’t it
introduce some stickiness in the tangent directions? Just like last time, it’s fine to have
these misgivings, but it practice we haven’t found that the stickiness is all that visible.

Since there’s no normal, there’s no cross product. We’re just going to push the two edges
apart, along the direction connecting their two closest points. It’s fine. It’s FINE. Run the
code if you don’t believe me!

The gradient works out to:

∂Ψ√ee
∂x

= −2k
(
ε− ‖te‖

)(∂te
∂x

)T te
‖te‖

. (14.41)

9They don’t disclose the threshold at which they consider two edges “parallel”. Booooo. That’s right,
I’m booing a paper. Booooo.
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Figure 14.10.: For Ψ√ee, don’t even compute a normal. The vector between xa and xb?
That’s our force direction.

The ∂te
∂x term is exactly the same as the ∂xb−xa

∂x term in Eqn. 14.37. Nothing new here. In
fact, there’s even less to contend with than usual, since we don’t have to deal with a ∂n

∂x .
Overall, it’s actually simpler. The Hessian is then:

∂2Ψ√ee
∂x2

= −2k(ε− ‖te‖)
(
∂te
∂x

)T ∂d
∂x

+ 2k

(
∂‖te‖
∂x

)(
∂te
∂x

)T
d

d =
te
‖te‖

.

The one new piece that just appeared is ∂d
∂x , but that works out to:

∂d

∂x
=

1

‖te‖
∂te
∂x
− 1

‖te‖3
te

(
∂te
∂x

T

te

)T
. (14.42)

All done. The pain in these expressions is minimal, and anyway I implemented it all for
you in EDGE_SQRT_COLLISION.

One last, tiny detail though. This energy can become degenerate too. See that d = te
‖te‖

term? When happens when ‖te‖ = ‖xb − xa‖ ≈ 0? Arrrrrggghhhh, does this endless
labyrinth of numerical degeneracies ever end? The answer is no. We just give up if
‖d‖ ≈ 10−8 and return zero force.10

10You might hold out the hope that maybe this case doesn’t happen that much in practice. Unfortunately, it’s
not uncommon. If two edges are colliding with each other and a kinematic object, the kinematic constraints
will smash the two edges together, making them exactly co-linear, and shooting ‖te‖ straight to zero. As
long as your object never engages in the simplest, most bargain-basement behavior of colliding with a
plane, you’re safe. You’re not safe!
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14.7.3 The Negated Version

Just like Ψe×e, you need to reverse the direction of Ψ√ee if the two edges are already in
collision. This works out to:

Ψ−√
ee

= µ(ε+‖te‖)2 (14.43)

∂Ψ−√
ee

∂x
= 2k

(
ε+‖te‖

)(∂te
∂x

)T te
‖te‖

(14.44)

∂2Ψ−√
ee

∂x2
= 2k(ε+‖te‖)

(
∂te
∂x

)T ∂d
∂x
−2k

(
∂‖te‖
∂x

)(
∂te
∂x

)T
d. (14.45)

With all this in place, we can compare the two edge-edge collision energies side-by-side
in Fig. 14.11.

(a) Original E (b) Timestep 105, Ψe×e (c) Timestep 375, Ψe×e

(d) Original E (e) Timestep 105, Ψ√ee (f) Timestep 375, Ψ√ee

Figure 14.11.: Dropping an E-shaped mesh on the ground, using the edge-edge collision
energies Ψe×e and Ψ√ee. The energies are clearly not exactly the same,
though they give the same overall behavior.
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14.7.4 This Part Isn’t in Fizt

You can combine the strengths of the previous two energies, and at least provide two
lines of defense. Primarily, you could just use Ψ√ee, but if the two edges get too close
together, fall back to Ψe×e. I implemented this for you in EDGE_HYBRID_COLLISION.11
What if the two edges are both parallel and overlapping? Then you’re out of luck. I wasn’t
kidding. The labyrinth doesn’t end.

This case actually is relatively rare though, so let’s just call it good. A nearby vertex-face
collision will probably save us from catastrophe. Probably. After this whole long journey,
is this really where I’m going to leave things? Is this really the ending? It is. There’s
no natural law that says that the development of numerical methods needs to follow a
satisfying plot arc. This is the ending. Really.

14.8 What About Eigenvalue Clamping?
One last piece that I still haven’t covered yet, butwill also end up feeling like an unresolved
subplot: what about eigenvalue clamping? I gave you all the messy Hessians, where’s the
sweet closed-form eigendecomposition that sweeps away all the ugliness? We haven’t
found them yet. They’re probably out there! But, we haven’t found them yet.12 Instead,
you have two options.

First, you could take the brute-force numerical eigendecomposition of each Hessian.
This isn’t so bad when you’re dealing with volumes, because the number of collisions is
usually relatively small compared to the number of elements, so this isn’t actually that
expensive. This approach will probably become the bottleneck if you’re dealing with
cloth though.

Second, you could always do a Gauss-Newton approximation to the Hessian, where you
only keep the outer product terms. Instead of,

∂2Ψe×e
∂x2

= 2k

ge×egTe×e +

((
ε+ te)Tn

)
tTe
∂2n

∂x2
+
∂te
∂x

T ∂n

∂x
+
∂n

∂x

T ∂te
∂x

)
just chop off everything that isn’t of the form xxT :

∂2Ψe×e
∂x2

≈ 2k
[
ge×eg

T
e×e

]
.

This is always guaranteed to be semi-positive definite as long the coefficient (in this case,
2k) is greater than or equal to zero. This is what Fizt actually does.

11You could arrange the defenses in reverse order too: Ψe×e most of the time, but fall back to Ψ√ee when
the edges get too parallel.

12Once again, sounds like a good project for a graduate student.

197



A. Table of Symbols

Appendix A

Table of Symbols

We adhere as closely as possible to the following convention:

Symbol Description
a unbolded, lower-case letter is a scalar
A unbolded, upper-case letter is (still) a scalar
a bold, lower-case letter is a vector
A bold, upper-case letter is a matrix
a ∈ <n a is an n-dimensional vector
A ∈ <m×n A is anm by nmatrix
A ∈ <m×n×o×... A is a higher-order (3rdand above) tensor

We use the following operators and special matrices:

Symbol Description
‖ · ‖2 2-norm (§C.1.1)
‖ · ‖F Frobenius norm (§C.1.2)
A : B Double-contraction of matricesA and B (§C.3)
A : B Double-contraction of higher-order tensor A and matrix B (§3.2,§C.3)
A⊗B A Kronecker product between two matrices (§C.5)
trA trace of matrixA, i.e. the sum of its diagonal entries,

∑n
i=0 aii (§C.2)

detA determinant of matrixA
vec(·) flattening or vectorization of a matrix or tensor (§3)
0 The zero matrix, a.k.a. the null matrix. Nothing but zeros
I The identity matrix. A diagonal matrix of all ones
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These symbols are reserved for the following deformation-specific phenomena:

Symbol Description
x̄ rest vertex, before deformation
x deformed vertex

F =

f00 f01 f02

f10 f11 f12

f20 f21 f22

 =

 f0 f1 f2

 deformation gradient, in 3D

F =

[
f00 f01

f10 f11

]
deformation gradient, in 2D

C right Cauchy-Green tensor, C = FTF
E Green’s strain, E = FTF− I
t translation
a anisotropic fiber direction from §8
J J = detF, the current relative volume of F
g1 flattened gradient of I1 invariant from §5.5
g2 flattened gradient of I2 invariant from §5.5
gJ ≡ g3 flattened gradient of J ≡ I3 from §4.2.2.1
H1 flattened Hessian of I1 invariant from §5.5
H2 flattened Hessian of I2 invariant from §5.5
HJ ≡ H3 flattened Hessian of J ≡ I3 from §4.2.2.2
R rotation matrix from the polar decomposition F = RS
S scaling matrix from the polar decomposition F = RS
U left singular vectors of the SVD of F = UΣVT

Σ =

σx 0 0
0 σy 0
0 0 σz

 singular values of the SVD of F = UΣVT

V right singular vectors of the SVD of F = UΣVT

x̂ =

 0 −x2 x1

x2 0 −x0

−x1 x0 0

 the cross product matrix of a vector x

n̂ a normalized vector in §9 and §10
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Appendix B

Useful Identities

Invariants:

IC = ‖F‖2F (B.1)
IIC = ‖FTF‖2F (B.2)

IIIC = det
(
FTF

)
(B.3)

IVC = aTCa (B.4)
VC = aTCTCa (B.5)

I1 = tr
(
RTF

)
= trS (B.6)

I2 = IC = ‖F‖2F (B.7)
I3 = J = detF (B.8)
I4 = aTSa (B.9)
I5 = IVC = aTFTFa (B.10)

Trace and Frobenius identities:

tr (αA) = α trA (B.11)
tr (A + B) = trA + trB (B.12)
tr (A−B) = trA− trB (B.13)

tr
(
ATB

)
= A : B = vec (A)T vec (B) (B.14)

‖A + B‖2F = ‖A‖2F + ‖B‖2F + 2 trATB (B.15)
‖A−B‖2F = ‖A‖2F + ‖B‖2F − 2 trATB (B.16)

tr
(
BAB−1

)
= tr

(
AB−1B

)
= tr (A) (B.17)

tr
(
RART

)
= tr (A) (when R is a rotation) (B.18)
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Invariant identities and derivatives:

∂I1

∂F
=
∂ trS

∂F
= R (B.19)

∂I2

∂F
=
∂IC
∂F

=
∂‖F‖2F
∂F

= 2F (B.20)

∂IIC
∂F

=
∂‖FTF‖2F

∂F
= 4FFTF (B.21)

∂I3

∂F
=
∂J

∂F
=

[
f11 −f10

−f01 f00

]
(In 2D) (B.22)

∂I3

∂F
=
∂J

∂F
=

 f1 × f2 f2 × f0 f0 × f1

 (In 3D) (B.23)

∂I5

∂F
=
∂IVC
∂F

= 2FaaT (B.24)

vec

(
∂2I2

∂F2

)
= H2 = HI = 2I9×9 (B.25)

vec

(
∂2I3

∂F2

)
= HJ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 (In 2D) (B.26)

vec

(
∂2I3

∂F2

)
= HJ =

 03×3 −f̂2 f̂1
f̂2 03×3 −f̂0
−f̂1 f̂0 03×3

 (In 3D) (B.27)

vec

(
∂2I5

∂F2

)
= vec

(
∂2IVC
∂F2

)
= 2aaT ⊗ I (B.28)

vec

(
∂2IIC
∂F2

)
= HII = 4

(
I3×3 ⊗ FFT + FTF⊗ I3×3 + D

)
(B.29)

D =

f0fT0 f1f
T
0 f2f

T
0

f0f
T
1 f1f

T
1 f2f

T
1

f0f
T
2 f1f

T
2 f2f

T
2

 (B.30)
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∂ log(I3)

∂F
=

1

I3

∂I3

∂F
=

1

J

∂J

∂F
(B.31)

tr
(
FTF

)
= ‖F‖2F = F : F =

∑
i

∑
j

F2
ij (B.32)

FTR = S (B.33)

∂‖R‖2F
∂F

=
∂ tr

(
RTR

)
∂F

=
∂ tr I

∂F
= 0 (B.34)

‖F−1‖2F =
I2

(I3)2
(In 2D) (B.35)

‖F−1‖2F =
1

4

(
I2

1 − I2

I3

)
− 2

I1

I3
(In 3D) (B.36)
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Appendix C

Notation

C.1 Norms
A norm is a way to boil the entries of a vector or matrix down to a single scalar, or score.
Often it’s impossible to stare at the wall of numbers that constitute a vector or matrix and
understand what’s going on, so it’s useful to somehow distill the “essence” of the vector
or matrix into a single number. Often you are looking for different “essences” though, so
to capture each of these, there are a variety of different norms.1

C.1.1 The 2-Norm

The vector norm we use most often is the 2-norm. For some vector x,

x =


x0

x1

x2
...

xn−1

 (C.1)

the 2-norm ‖ · ‖2 is the square root of the squared sum:

‖x‖2 =

√√√√n−1∑
i=0

x2
i . (C.2)

If there are only two entries in x, such as x =

[
x0

x1

]
, then we get the familiar Euclidean

distance:
‖x‖2 =

√
x2

0 + x2
1. (C.3)

1Another way to think of a norm is “average over all the members”. So when we talk of societal norms, it
is the overall behavior that we expect from averaging over the members of that society.
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The 2-norm is just a generalization of this style of measurement.

C.1.2 The Frobenius Norm

The matrix norm we will use the most often is the Frobenius norm. It is exactly the same as
the 2-norm, except that it is defined over all the entries of a matrix. For some matrixA,

A =


a00 a01 . . . a0(n−1)

a10 a11 . . . a1(n−1)
...

... . . . ...
a(m−1)0 a(m−1)1 . . . a(m−1)(n−1)

 (C.4)

the Frobenius norm ‖ · ‖F is (again) the square root of the squared sum:

‖A‖F =

√√√√m−1∑
i=0

n−1∑
j=0

a2
ij . (C.5)

It is ugly to have the square root enveloping everything, and it also introduces pesky 1/2

factors when you take derivatives, so usually we use the squared Frobenius norm:

‖A‖2F =
m−1∑
i=0

n−1∑
j=0

a2
ij . (C.6)

Notationally, this version only differs from ‖ · ‖F with the 2 in the super-script, ‖ · ‖2F , so
it can be easy to get confused. Just remember that we’re almost always going to use the
squared version. In fact, as I write this, I’m having trouble thinking of a single instance
where we will need to use the un-squared ‖ · ‖F .

I’ll wrap up discussion of this norm with two observations.

• The 2-norm is literally a vector version of the Frobenius norm. You can write ‖x‖F
instead of ‖x‖2 and they mean the exact same thing.

• The Frobenius norm is weird. With the 2-norm, we have some notion of measuring
the magnitude of a vector. With the Frobenius norm, we appear to be arbitrarily
smashing all the entries of a matrix together into one scalar.

Doesn’t anybody care which row and column these entries came from? Surely
their ordering in the matrix should count for something? Maybe there is a matrix
norm out there that cares, but not Frobenius. Despite this apparent blindness, the
Frobenius norm gets the job done in many useful scenarios.
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C.2 Matrix Trace
The trace of a matrix, trA, is the sum of its diagonal entries:

trA =

n−1∑
i=0

aii. (C.7)

This seems like an arbitrary operation to define for a matrix. So if I swap two of the
rows, then I get a different trace? How is this at all useful? While this is indeed odd,
the interesting and surprising property of the matrix trace is that trA is the sum of the
eigenvalues of A.

This is not obvious at all! The eigenvalues are supposed to be some fundamental, atomic
property that can only be acquired after a perilous journey involving Householder
reductions, shifted-QR factorizations, or other exotic numerical analysis weapons. And
yet, the sum of these buried jewels can somehow be plucked right off of the surface of the
matrix. Huh.

C.3 Matrix Double-Contractions
The double-contraction, denotes with a ‘:’, is a generalized version of the dot product for
vectors. With vectors, we multiply together the corresponding entries in vector, and then
glob them all together in a summation:

xTy =

x0

x1

x2


T y0

y1

y2

 = x0y0 + x1y1 + x2y2. (C.8)

The double-contraction does the exact same thing, but for the entries of two matrices:

A : B =

[
a0 a2

a1 a3

][
b0 b2
b1 b3

]
= a0b0 + a1b1 + a2b2 + a3b3. (C.9)

The dimensions of the two matrices need to be the same, otherwise the operations is
undefined (and you screwed up somewhere).

This operation may look odd to you. Similar to the Frobenius norm, it chucks all the
entries of the matrices into the same pile, insensitive to whether they have important-
looking VIP status like being along the diagonal. It is indeed odd, but this is the definition
nevertheless, and despite its status-obliviousness, it is still quite useful.

C.4 Outer Products
You’ve probably been sent here by §4.2.2.1. We’re used to seeing inner products, a.k.a. dot
products like xTy = α where two vectors x and y are smooshed together in such a way
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that they’re demoted to the lowly scalar α. In other words, inner products take two
rank-one quantities (vectors) and bash them down to rank-zero quantity (a scalar).

The outer product goes in the other direction: xxT = A. A pair of rank-one quantities
join forces to generate a bigger, rank-two result (a matrix). This product doesn’t appear
quite as often as the inner product, so while it probably did show up in your linear
algebra class at some point, there’s a good chance that you haven’t seen it since you
crammed for the midterm. So, here’s a refresher.

If we have two vectors,

x =

ab
c

 y =

de
f

 , (C.10)

then their outer product is

xyT =

ab
c


de
f


T

=

ad ae af
bd be bf
cd ce cf

 (C.11)

We place a copy of x into each column, and in turn, scale the copy by each entry in y.

Why is this helpful? Inner products have intuitive interpretations like projecting of one
vector onto another, but what’s the point of this baroque and arbitrary-looking operation?

The outer product form often shows up when you see what’s really going on inside the
primordial morass of numbers that form amatrix. We can look at the eigendecomposition
of a symmetric n× nmatrix,

A = QΛQT , (C.12)

where Q is the matrix of eigenvectors, qi, and Λ is a matrix of the eigenvalues, λi:

Q =

 q0 q1 . . . qn−1

 Λ =


λ0

λ1

. . .
λn−1

 . (C.13)

We can see a hint of the xyT outer product form by looking at QΛQT . Both have
a transpose all the way on the right hand side. This is not a coincidence, as the
eigendecomposition of a matrix can indeed be written as a sum of outer products:

A = QΛQT = λ0q0q
T
0 + λ1q1q

T
1 + . . .+ λnqnq

T
n (C.14)

A =

n−1∑
i=0

λiqiq
T
i . (C.15)
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Thus, one way to look at a matrix A ∈ <n×n is as a scaled sum of n outer products. What
does this mean? Say you went ahead and just lopped off the last ten terms in the sum:

Aoops =
n−11∑
i=0

λiqiq
T
i . (C.16)

You would still get an n× nmatrix out in the end. However, lurking inside that matrix
would be rank-deficiency. You secretly don’t need the full complement of n outer products
to produce all the entries of Aoops.

In the extreme, you might only need one outer product to produce Aoops, making it a
rank-one matrix. In that case, you don’t need to store the whole matrixAoops, you can
just carry around the one eigenpair, (q0,λ0), and generate Aoops = λ0q0q

T
0 on-the-fly

whenever you need it.

Conversely, imagine you’re looking at the eigendecompositions of matrices that appear
somewhere in your code. The decomposition keeps telling you that it’s a rank-one
matrix. In this case, your job as a numerical archeologist just got easier. Instead of trying
to excavate the underlying structure of all n × n entries, you can now just focus on
understanding where this one q0 ∈ <n came from. Your task just got quadratically easier.

C.5 Kronecker Products
The Kronecker product is the matrix version of the outer product, though it irritatingly
reverses the ordering of the operators. The Kronecker product ofA and B is:

A⊗B =

[
a00 a01

a10 a11

]
⊗

[
b00 b01

b10 b11

]
=

[
a00B a01B
a10B a11B

]

=


a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b00 a01b01

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b00 a11b01


Whereas the outer product stacked together a bunch of scaled copies of x from the left,
the Kronecker product stacks scaled copies of B from the right. I don’t make the rules
here. Already I’m wondering where in these notes I messed up the ordering.

This product commonly appears with an identity matrix. If you have a matrix A, and
you need to stamp copies of A down the block-diagonal of a matrix, then the Kronecker
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product is up to the task:

I2×2 ⊗A =

[
1 0
0 1

]
⊗

[
a00 a01

a10 a11

]
=

[
A 02×2

02×2 A

]

=


a00 a01 0 0
a10 a11 0 0
0 0 a00 a01

0 0 a10 a11


If you need to spread each entry ofA across the block-diagonal of a matrix, reversing
the two matrices gets the job done:

A⊗ I2×2 =

[
a00 a01

a10 a11

]
⊗

[
1 0
0 1

]
=

[
a00I2×2 a01I2×2

a10I2×2 a11I2×2

]

=


a00 0 a01 0
0 a00 0 a01

a10 0 a11 0
0 a10 0 a11

 .

These sorts of patterns tend to appear when you flatten out higher order tensors. So, we
see them in §4.2.3 when computingHII and in §8.2.2.1 when computingHIV ≡ H5.
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Appendix D

How to Compute F, the Deformation
Gradient

First we’ll look at an intuitive, geometric, purely linear-algebraic way to compute F
on triangles and tetrahedra. Then we’ll look at a slightly more obtuse, calculus-based
method that does the exact same thing using finite element basis functions. While this
method is more involved and less intuitive, it will point the way to computing F on other
primitives, such as hexahedra.

D.1 Computing F for 2D Triangles
Let’s say we have a triangle with vertices x̄0, x̄1, and x̄2. After deformation, these same
vertices have become x0, x1, and x2. How do we compute a <2×2 matrix F that describes
the rotation and scaling that occurs to transform the points x̄i into xi?

We specifically want to pull off any translations, so let’s deal with that first. Both triangles
are floating off in space somewhere, so just to establish a common point of reference,
let’s pull them both back to the origin. If they’re centered about the origin, then no
relative translation needed to transform one into the other, and any remaining difference
between the triangles must be due to rotation and scaling.

We’ll pull both triangles back to the origin by explicitly pinning x̄0 and x0 to the origin
(see Fig. D.1). The new vertices of our origin-centered rest-triangle become:

x̄0 → ō0 = [0 0]T (D.1)
x̄1 → ō1 = x̄1 − x̄0 (D.2)
x̄2 → ō2 = x̄2 − x̄0. (D.3)
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Figure D.1.: Let’s eliminate the translation by pulling the rest triangle (left, blue vertices),
back to the origin (center left, blue vertices). We do the same thing to the
deformed triangle (right, red vertices).

The vertices of the origin-centered deformed triangle are correspondingly:

x0 → o0 = [0 0]T (D.4)
x1 → o1 = x1 − x0 (D.5)
x2 → o2 = x2 − x0. (D.6)

Now we want to know what matrix F will successfully rotate and scale all of our ōi
vertices so that they become the oi vertices. In other words, we want the matrixF satisfies
these three equations:

Fō0 = o0 Fō1 = o1 Fō2 = o2. (D.7)

The first equation, Fō0 = o0 is trivially satisfied by any matrix F, since both ō0 and o0

are all zeros.

Really we only need to worry about F covering the other two cases by successfully
producing o1 and o2 when provided with ō1 and ō2. If we write this desire down
explicitly, it’s a well-posed linear algebra problem:

F

 x̄1 − x̄0 x̄2 − x̄0

 =

 x1 − x0 x2 − x0

 (D.8)

F

 ō1 ō2

 =

 o1 o2

 (D.9)

FDm = Ds (D.10)

210



D. How to Compute F, the Deformation Gradient

Computing the final F then becomes straightforward:

F = DsD
−1
m . (D.11)

TheDm matrix is quite small, i.e. 2× 2 in 2D, so there’s no need to be worried that taking
its inverse might be expensive. TheDm matrix also only depends on the rest pose, so you
can precompute its inverse once at startup, and then when you need to compute F at any
later time, no new inverse computation is needed.

Here we follow the naming convention in Teran et al. (2005) and abbreviate things toDm

and Ds, wherem denotes material coordinates and s denotes spatial coordinates1. In a
perfect world we’d stick with our own naming convention and call these Dr and Dd, for
rest and deformed, but them and s subscripts are popular enough in other papers that
we’re going to stick to them here. Then you won’t get confused when you read these
other papers (including some of mine).

One thing you may be wondering: we specifically decided to pin x̄0 to the origin. Could
we pick x̄1 or x̄2? Does it matter? Will we get the same F? Is one better than the other? It
doesn’t actually matter, though you should work out a few examples to convince yourself
of this fact.

One thing you might worry about is the conditioning of these elements, i.e. instead of
a nice chubby triangle you have a sadly skinny one that is essentially a line. A poorly-
conditioned element is known to ruin the stability of simulations, because divide-by-zeros
occur when computing F. This happens because o1 and o2 are nearly coincident and
D−1
m becomes rank-deficient. Picking a different x̄i to the origin will not to save your

bacon.

D.2 Computing F for 3D Tetrahedra
For a 3D tetrahedron, there is a straightforward generalization. In this case, we want a
3× 3 version of F. We translate the rest and deformed versions to the origin again, and
after observing that Fō0 = o0 is again trivial, we are left with a 3× 3 formulation:

F

 x̄1 − x̄0 x̄2 − x̄0 x̄3 − x̄0

 =

 x1 − x0 x2 − x0 x3 − x0

 (D.12)

F

 ō1 ō2 ō3

 =

 o1 o2 o3

 (D.13)

FDm = Ds (D.14)
F = DsD

−1
m (D.15)

1I think. I’m guessing here, but it seems quite likely.
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Figure D.2.: The basis functions are linear functions that are equal to one (red) at their
corresponding vertices and ramp linearly down to zero (white) as the
opposing edge is approached.

D.3 Computing F the Finite Element Way
Now let’s do the exact same thing, but in a different and more opaque way. But why? In
the end, there will be an obvious way to extend this approach to computing F on squares
(quads) and cubes (hexahedra).

D.3.1 Remember Barycentric Coordinates?

We are going to use the Graphics 101 (see e.g. Marschner and Shirley (2016)) concept of
barycentric coordinates for this one. If you’ve done some finite element stuff, you will
recognize these as basis or shape functions over the triangle, specifically hat functions. If
you’re reading this though, you’re probably a graphics person and not a mechanical
engineering person, so we’ll stick to barycentric coordinates. For our purposes, the two
concepts are completely equivalent.

A barycentric coordinate system assigns an easy-to-use 2D coordinate to every point on
the interior of a triangle. These are usually denoted u and v, that are easy-to-use because
they are always defined over [0, 1]. If we have some barycentric coordinate b = [u v]T ,
we can then reconstruct any point x(b) or x̄(b) on the interior of the triangle using a
linear combination of the basis functions βi:

x(b) =
2∑
i=0

xiβi(b) x̄(b) =
2∑
i=0

x̄iβi(b) (D.16)

The basis functions βi are:

β0(b) = 1− u− v β1(b) = u β2(b) = v (D.17)

Each basis function βi is attached to its corresponding vertex xi (see Fig. D.2). It is equal
to 1 right on top of the vertex, and then fades off to 0 as you approach the triangle edge
that is opposite to that vertex.
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D.3.2 Computing F for 2D Triangles, the Basis Function Way

Now let’s use these basis functions to compute the deformation gradient. Remember
way back in Eqn. 2.2 that the deformed points were defined as

x = Fx̄ + t, (D.18)

so we can retrieve the deformation gradient by taking ∂x
∂x̄ (we actually wrote it as ∂φ

∂x̄ ,
but it’s the same). We can now use the basis functions to compute this in a brute-force,
no-intuition-to-cling-to, calculus-based way.

Remember from Eqn. D.16 that we can also write both x and x̄ in terms of the barycentric
coordinate b. We can thus expand ∂x

∂x̄ using the chain rule to route it through the
b-dependent version of x and x̄:

F =
∂x

∂x̄
=
∂x

∂b

∂b

∂x̄

=
∂x

∂b

(
∂x̄

∂b

)−1

.

(D.19)

If we then plug in our basis-function-based definitions of x and x̄ (Eqn. D.16), we get:

F =
∂x

∂b

(
∂x̄

∂b

)−1

=
∂

∂b

 2∑
i=0

xiβi(b)

 ∂

∂b

 2∑
i=0

x̄iβi(b)

−1

=

 2∑
i=0

xi
∂βi(b)

∂b

 2∑
i=0

x̄i
∂βi(b)

∂b

−1

.

(D.20)

Since xi and x̄i don’t actually depend on the value of b, we can to write the derivative
purely in terms of βi. This lack of dependence make sense; we’re generating x(b) by
interpolating over a set of xi. No matter what b we send down the pipe, the set of xi
points we’re trying to interpolate over stays the same.

The next trick is that we can write down Eqn. D.20 in matrix form

F =

 2∑
i=0

xi
∂βi(b)

∂b

 2∑
i=0

x̄i
∂βi(b)

∂b

−1

= XH
(
X̄H

)−1
.

(D.21)

The matrices X and X̄ are just the deformed and rest vertices of the triangles packed
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together:

X̄ =

 x̄0 x̄1 x̄2

 ∈ <2×3 (D.22)

X =

 x0 x1 x2

 ∈ <2×3. (D.23)

The non-trivial component here is H, the matrix of partials ∂βi(b)
∂b . We can write the

matrix of partials out explicitly as:

H =


∂β0

∂u
∂β0

∂v

∂β1

∂u
∂β1

∂v

∂β2

∂u
∂β2

∂v

 . (D.24)

Fortunately, the βi functions are quite simple! So, the derivatives are really easy and this
matrix works out to:

H =

−1 −1
1 0
0 1

 . (D.25)

Finally, and somewhat perversely, we point out that:

X̄H =

 x̄0 x̄1 x̄2


−1 −1

1 0
0 1

 =

 x̄1 − x̄0 x̄2 − x̄0

 = Dm (D.26)

XH =

 x0 x1 x2


−1 −1

1 0
0 1

 =

 x1 − x0 x2 − x0

 = Ds, (D.27)

and therefore

F = XH
(
X̄H

)−1 (D.28)
= DsD

−1
m (D.29)

Argh! It’s exactly the same as the previous methodwe saw, but with a lot of basis function
dreck and unnecessary derivatives to slug through! What was the point?!

Relax. You didn’t go through a bunch of math of nothing. As I said before, there is indeed
a point: once you’ve gone through this process once, you can use the exact same method
to turn the crank and compute F for primitives that aren’t triangles or tetrahedra.
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D.3.3 Computing F for 3D Tetrahedra, the Basis Function Way

Let’s turn the crank for a 3D tetrahedron. It contains 4 vertices, so we add a new index to
x(b) and x̄(b),

x(b) =
3∑
i=0

xiβi(b) x̄(b) =
3∑
i=0

x̄iβi(b), (D.30)

one more barycentric coordinate to b = [u v w]T and one more basis function:

β0(b) = 1− u− v − w β1(b) = u (D.31)
β2(b) = v β2(b) = w. (D.32)

We’re still looking for
F = XH

(
X̄H

)−1
, (D.33)

where

X̄ =

 x̄0 x̄1 x̄2 x̄3

 ∈ <3×4 (D.34)

X =

 x0 x1 x2 x3

 ∈ <3×4. (D.35)

The matrix of partials becomes predictably larger and more unwieldy-looking,

H =



∂β0

∂u
∂β0

∂v
∂β0

∂w

∂β1

∂u
∂β1

∂v
∂β1

∂w

∂β2

∂u
∂β2

∂v
∂β2

∂w

∂β3

∂u
∂β3

∂v
∂β3

∂w

 , (D.36)

but as before, it works out to a simple result:

H =


−1 −1 −1
1 0 0
0 1 0
0 0 1

 . (D.37)
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Then, just like before, we end up with

X̄H =

 x̄0 x̄1 x̄2 x̄3



−1 −1 −1
1 0 0
0 1 0
0 0 1

 =

 x̄1 − x̄0 x̄2 − x̄0 x3 − x̄0

 = Dm

(D.38)

XH =

 x0 x1 x2 x3



−1 −1 −1
1 0 0
0 1 0
0 0 1

 =

 x1 − x0 x2 − x0 x3 − x0

 = Ds,

(D.39)

and arrive at the same result:

F = XH
(
X̄H

)−1 (D.40)
= DsD

−1
m . (D.41)

D.3.4 Computing F for 2D Quads, the Basis Function Way

For completeness, should really include this.

D.3.5 Computing F for 3D Hexahedra, the Basis Function Way

For a cube element, let’s begin by defining everything over a canonical cube that goes
from [1, 1, 1] to [−1,−1,−1]. We order the vertices of this cube like this:

a = [−1,−1,−1]

b = [1,−1,−1]

c = [−1, 1,−1]

d = [1, 1,−1]

e = [−1,−1, 1]

f = [1,−1, 1]

g = [−1, 1, 1]

h = [1, 1, 1]

The vertices are traversed in counter-clockwise order, starting with the square in the
z = −1 plane, and followed by the one in the z = +1 plane. While it’s not really
“barycentric”, we have a coordinate b = [u v w]T that we use to address every point
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inside the canonical space. The shape functions using b are then:

β0(b) = (1− u)(1− v)(1− w)

β1(b) = (1 + u)(1− v)(1− w)

β2(b) = (1− u)(1 + v)(1− w)

β3(b) = (1 + u)(1 + v)(1− w)

β4(b) = (1− u)(1− v)(1 + w)

β5(b) = (1 + u)(1− v)(1 + w)

β6(b) = (1− u)(1 + v)(1 + w)

β7(b) = (1 + u)(1 + v)(1 + w)

The matrix of partials is a real eyesore this time around,

H =



∂β0

∂u
∂β0

∂v
∂β0

∂w

∂β1

∂u
∂β1

∂v
∂β1

∂w

∂β2

∂u
∂β2

∂v
∂β2

∂w

∂β3

∂u
∂β3

∂v
∂β3

∂w

∂β4

∂u
∂β4

∂v
∂β4

∂w

∂β5

∂u
∂β5

∂v
∂β5

∂w

∂β6

∂u
∂β6

∂v
∂β6

∂w

∂β7

∂u
∂β7

∂v
∂β7

∂w



, (D.42)

and unlike before, this time it does notwork out to a matrix of constants:

H =



−(1− v)(1− w) −(1− u)(1− w) −(1− u)(1− v)
+(1− v)(1− w) −(1 + u)(1− w) −(1 + u)(1− v)
−(1 + v)(1− w) +(1− u)(1− w) −(1− u)(1 + v)
+(1 + v)(1− w) +(1 + u)(1− w) −(1 + u)(1 + v)
−(1− v)(1 + w) −(1− u)(1 + w) +(1− u)(1− v)
+(1− v)(1 + w) −(1 + u)(1 + w) +(1 + u)(1− v)
−(1 + v)(1 + w) +(1− u)(1 + w) +(1− u)(1 + v)
+(1 + v)(1 + w) +(1 + u)(1 + w) +(1 + u)(1 + v)


. (D.43)

Typing this equation into C++ is an irritating and error-prone process, so I have listed
my implementation of in Fig. D.3. Let me know if you find any typos.

If we want to compute F = XH
(
X̄H

)−1, we first build out theX and X̄matrices, which
now contains all eight vertices of the cube:

X =

 x0 x1 x2 x3 x4 x5 x6 x7

 ∈ <3×8 (D.44)
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and

X̄ =

 x̄0 x̄1 x̄2 x̄3 x̄4 x̄5 x̄6 x̄7

 ∈ <3×8. (D.45)

Since H is not constant, we have to select b, the location of the quadrature point. In the
case of triangles and tetrahedra (with linear basis functions) that we saw before, F was
uniquely defined over the entire primitive. With a hexahedron, F is different depending
on where you are in the cube, so you need to specify the exact location you want to
sample F at.

Just like with tetrahedra, you can pre-cache D−1
m at startup, but in this case, you can

actually do a little better. In the entire expression F = XH
(
X̄H

)−1, the only matrix that
will vary at runtime is X, so why not go ahead and cache H

(
X̄H

)−1
= HD−1

m ? It will
save you a matrix multiply every time. An example of what I mean is in Fig. D.4.

218



D. How to Compute F, the Deformation Gradient

1 // Shape function derivative matrix
2 static Matrix8x3 ComputeH(const Vector3& b)
3 {
4 const Scalar b0Minus = (1.0 - b[0]);
5 const Scalar b0Plus = (1.0 + b[0]);
6 const Scalar b1Minus = (1.0 - b[1]);
7 const Scalar b1Plus = (1.0 + b[1]);
8 const Scalar b2Minus = (1.0 - b[2]);
9 const Scalar b2Plus = (1.0 + b[2]);

10

11 Matrix8x3 H;
12

13 H(0,0) = -b1Minus * b2Minus;
14 H(0,1) = -b0Minus * b2Minus;
15 H(0,2) = -b0Minus * b1Minus;
16

17 H(1,0) = b1Minus * b2Minus;
18 H(1,1) = -b0Plus * b2Minus;
19 H(1,2) = -b0Plus * b1Minus;
20

21 H(2,0) = -b1Plus * b2Minus;
22 H(2,1) = b0Minus * b2Minus;
23 H(2,2) = -b0Minus * b1Plus;
24

25 H(3,0) = b1Plus * b2Minus;
26 H(3,1) = b0Plus * b2Minus;
27 H(3,2) = -b0Plus * b1Plus;
28

29 H(4,0) = -b1Minus * b2Plus;
30 H(4,1) = -b0Minus * b2Plus;
31 H(4,2) = b0Minus * b1Minus;
32

33 H(5,0) = b1Minus * b2Plus;
34 H(5,1) = -b0Plus * b2Plus;
35 H(5,2) = b0Plus * b1Minus;
36

37 H(6,0) = -b1Plus * b2Plus;
38 H(6,1) = b0Minus * b2Plus;
39 H(6,2) = b0Minus * b1Plus;
40

41 H(7,0) = b1Plus * b2Plus;
42 H(7,1) = b0Plus * b2Plus;
43 H(7,2) = b0Plus * b1Plus;
44

45 return H / 8.0;
46 }

Figure D.3.: Shape derivative matrix for Eqn. D.43.
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1 // quadrature point locations along the inside
2 // of a canonical cube
3 static const Scalar invSqrt3 = 1.0 / std::sqrt(3.0);
4 static const std::array<Vector3 ,8> restGaussPoints =
5 {
6 invSqrt3 * Vector3(-1, -1, -1),
7 invSqrt3 * Vector3( 1, -1, -1),
8 invSqrt3 * Vector3(-1, 1, -1),
9 invSqrt3 * Vector3( 1, 1, -1),

10 invSqrt3 * Vector3(-1, -1, 1),
11 invSqrt3 * Vector3( 1, -1, 1),
12 invSqrt3 * Vector3(-1, 1, 1),
13 invSqrt3 * Vector3( 1, 1, 1)
14 };
15

16 // cache DmInv at startup
17 std::array<Matrix8x3 ,8> ComputeHDmInv(const Matrix3x8& Xbar)
18 {
19 std::array<Matrix8x3 ,8> HDmInv;
20

21 for (int x = 0; x < 8; x++)
22 {
23 // compute Dm
24 const Matrix8x3 H = ComputeH(restGaussPoints[x]);
25 const Matrix3 Dm = Xbar * H;
26 const Matrix3 DmInverse = Dm.inverse();
27

28 // cache it left-multiplied by H
29 HDmInv[x] = H * DmInverse;
30 }
31

32 return HDmInv;
33 }

Figure D.4.: Caching HD−1
m for hexahedra.
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Appendix E

All the Details of ∂F
∂x

Following on from §3.4.1 we want to compute

∂F

∂x
=
∂Ds

∂x
D−1
m . (E.1)

This is a 3rd-order tensor containing twelve matrices. First, we will show the form of each
of the twelve scalar derivatives ∂Ds

∂xi
, and then we’ll show each combined ∂Ds

∂xi
D−1
m .

Again, the entries ofDm andDs are:

Ds =

 x1 − x0 x2 − x0 x3 − x0

 Dm =

 x̄1 − x̄0 x̄2 − x̄0 x̄3 − x̄0

 , (E.2)

and we want the twelve resulting matrices from taking the derivative with respect to

x =


x0

x1

x2

x3

 =


x0

x1
...
x11

. These then get arranged like cheese slices on a cutting board:

∂Ds

∂x
=



[
∂Ds
∂x0

]
[
∂Ds
∂x1

]
...

[
∂Ds
∂x11

]


(E.3)
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Finally, here are the all the actual entries of ∂Ds
∂x :

∂Ds

∂x0
=

 −1 −1 −1
0 0 0
0 0 0

 ∂Ds

∂x1
=

 0 0 0
−1 −1 −1
0 0 0

 ∂Ds

∂x2
=

 0 0 0
0 0 0
−1 −1 −1


∂Ds

∂x3
=

 1 0 0
0 0 0
0 0 0

 ∂Ds

∂x4
=

 0 0 0
1 0 0
0 0 0

 ∂Ds

∂x5
=

 0 0 0
0 0 0
1 0 0


∂Ds

∂x6
=

 0 1 0
0 0 0
0 0 0

 ∂Ds

∂x7
=

 0 0 0
0 1 0
0 0 0

 ∂Ds

∂x8
=

 0 0 0
0 0 0
0 1 0


∂Ds

∂x9
=

 0 0 1
0 0 0
0 0 0

 ∂Ds

∂x10
=

 0 0 0
0 0 1
0 0 0

 ∂Ds

∂x11
=

 0 0 0
0 0 0
0 0 1

 .

All ones and zeros! There are a lot of them, but they are indeed quite simple. To write
down the full ∂F∂x expression, we now need to label the rows and columns of D−1

m , which
we do thusly:

D−1
m =

 r0

r1

r2

 =

 c0 c1 c2

 . (E.4)

Now we can list the results of multiplying through each ∂F
∂xi

= ∂Ds
∂xi

D−1
m :

∂F

∂x0
=

 −s0 −s1 −s2

0 0 0
0 0 0

 ∂F

∂x1
=

 0 0 0
−s0 −s1 −s2

0 0 0

 ∂F

∂x2
=

 0 0 0
0 0 0
−s0 −s1 −s2


∂F

∂x3
=

 r0

0 0 0
0 0 0

 ∂F

∂x4
=

 0 0 0
r0

0 0 0

 ∂F

∂x5
=

 0 0 0
0 0 0

r0


∂F

∂x6
=

 r1

0 0 0
0 0 0

 ∂F

∂x7
=

 0 0 0
r1

0 0 0

 ∂F

∂x8
=

 0 0 0
0 0 0

r1


∂F

∂x9
=

 r2 0
0 0
0 0 0

 ∂F

∂x10
=

 0 0 0
r2

0 0 0

 ∂F

∂x11
=

 0 0 0
0 0 0

r2


In the first row, si denotes the sum of the entries in ci. Again, there’s a lot of stuff here,
but each individual piece is not very complicated. The final matrix entries are all just
rows and columns from D−1

m .
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As a big birthday present to you (and Future Me), the code for the flattened version of
this tensor, vec

(
∂F
∂x

)
is given in Fig. E.1. Finally, it is important to point out that this code

only applies to tetrahedra. Hexahedra and other polyhedra are another can of worms.
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1 static Matrix9x12 ComputePFPx(const Matrix3& DmInv)
2 {
3 const Scalar m = DmInv(0, 0);
4 const Scalar n = DmInv(0, 1);
5 const Scalar o = DmInv(0, 2);
6 const Scalar p = DmInv(1, 0);
7 const Scalar q = DmInv(1, 1);
8 const Scalar r = DmInv(1, 2);
9 const Scalar s = DmInv(2, 0);

10 const Scalar t = DmInv(2, 1);
11 const Scalar u = DmInv(2, 2);
12

13 const Scalar t1 = - m - p - s;
14 const Scalar t2 = - n - q - t;
15 const Scalar t3 = - o - r - u;
16

17 Matrix9x12 PFPx;
18 PFPx.setZero();
19 PFPx(0, 0) = t1;
20 PFPx(0, 3) = m;
21 PFPx(0, 6) = p;
22 PFPx(0, 9) = s;
23 PFPx(1, 1) = t1;
24 PFPx(1, 4) = m;
25 PFPx(1, 7) = p;
26 PFPx(1, 10) = s;
27 PFPx(2, 2) = t1;
28 PFPx(2, 5) = m;
29 PFPx(2, 8) = p;
30 PFPx(2, 11) = s;
31 PFPx(3, 0) = t2;
32 PFPx(3, 3) = n;
33 PFPx(3, 6) = q;
34 PFPx(3, 9) = t;
35 PFPx(4, 1) = t2;
36 PFPx(4, 4) = n;
37 PFPx(4, 7) = q;
38 PFPx(4, 10) = t;
39 PFPx(5, 2) = t2;
40 PFPx(5, 5) = n;
41 PFPx(5, 8) = q;
42 PFPx(5, 11) = t;
43 PFPx(6, 0) = t3;
44 PFPx(6, 3) = o;
45 PFPx(6, 6) = r;
46 PFPx(6, 9) = u;
47 PFPx(7, 1) = t3;
48 PFPx(7, 4) = o;
49 PFPx(7, 7) = r;
50 PFPx(7, 10) = u;
51 PFPx(8, 2) = t3;
52 PFPx(8, 5) = o;
53 PFPx(8, 8) = r;
54 PFPx(8, 11) = u;
55

56 return PFPx;
57 }

Figure E.1.: C++ code to compute the flattened version of ∂F∂x .
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Appendix F

Rotation-Variant SVD and Polar De-
composition

The problem described in §2.3.4.4 is that the traditional polar decomposition, which we
will call F = R̂Ŝ, only requires R̂ to be unitary. A troublesome reflection can then lurk
in R̂ that prevents it from being a pure rotation. We will now describe a simple way to
compute the rotation variant of the polar decomposition. Along the way, we will also
show how to do the same for the SVD.

A straightforward way to compute the polar decomposition of F is to first compute its
SVD,

F = ÛΣ̂V̂T , (F.1)
and then recombine its components into R̂ and Ŝ:

R̂ = ÛV̂T (F.2)
Ŝ = V̂Σ̂V̂T (F.3)

Since Û and V̂ are also unitary, these representations are all trivially equivalent:

R̂Ŝ = ÛV̂T V̂Σ̂V̂T (F.4)
= ÛIΣ̂V̂T (Used unitary property)
= ÛΣ̂V̂T = F. (Definition of SVD)

What we want is to generate purely rotational versions of Û and V̂, i.e.U andV. Then
we can combine them into another pure rotation,R = UVT .

One easy way to test whether R̂ is secretly harboring a reflection is to look at the
determinant of R̂, i.e. det R̂. The determinant is the product of the singular values of

a matrix, so if R̂ was a pure rotation, all its singular values would be Σ =

1 0 0
0 1 0
0 0 1

,
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and det R̂ = 1. However, if it contains a reflection, one singular value must be −1,

Σ =

1 0 0
0 1 0
0 0 −1

, and det R̂ = −1.

There’s no such thing as a double reflection, only a single reflection. A double-reflection
is the same as rotating by π, which is a valid rotation. In that case, the rotation would
have been loaded into Û or V̂.

With this in hand, we can now build a reflection matrix:

L =


1 0 0
0 1 0

0 0 det
(
ÛV̂T

)
 . (F.5)

Computing the rotation variant of Σ is now straightforward:

Σ = Σ̂L. (F.6)

If there were no reflections lurking anywhere, then L = I, so no harm done. However, we
have to be a little careful when computing the new U and V. We need to check whether
the reflection is lurking in either Û or V̂, and only apply L to that one:

U =

{
ÛL if det Û < 0 and det V̂ > 0

Û otherwise
(F.7)

V =

{
V̂L if det Û > 0 and det V̂ < 0

V̂ otherwise.
(F.8)

With the rotation-variant SVD in hand, computing the rotation-variant polar decomposi-
tion is easy:

R = UVT (F.9)
S = VΣVT . (F.10)

Complete Matlab/Octave code for the 3D case is given in Figs. F.1 and F.2

Historically, the need for the rotation-variant SVD and polar decomposition has been
observed by a variety of authors (Twigg and Kačić-Alesić (2010); Higham (2008); Irving
et al. (2004)). The version we describe here with the slick determinant/reflection matrix
trick is from Sorkine-Hornung and Rabinovich (2017).
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1 function [U Sigma V] = svd_rv(F)
2 [U Sigma V] = svd(F);
3

4 % reflection matrix
5 L = eye(3,3);
6 L(3,3) = det(U * V’);
7

8 % see where to pull the reflection out of
9 detU = det(U);

10 detV = det(V);
11 if (detU < 0 && detV > 0)
12 U = U * L;
13 elseif (detU > 0 && detV < 0)
14 V = V * L;
15 end
16

17 % push the reflection to the diagonal
18 Sigma = Sigma * L;
19 end

Figure F.1.: Matlab code to compute the rotation-variant SVD.

1 function [R S] = polar_decomposition_rv(F)
2 [U Sigma V] = svd_rv(F);
3 R = U * V’;
4 S = V * Sigma * V’;
5 end

Figure F.2.: Matlab code to compute the rotation-variant polar decomposition.
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Appendix G

Thin Shell Stretch and Shear Pseudocode

1 void
2 ClothFace::_ComputeStretchAndShearForcesAndJacobians()
3 {
4 real uvs[3][2]
5 _face->GetScaledFaceUVs(uvs)
6 const real areaUV = _face->GetAreaUV()
7 const real du1 = uvs[1][0] - uvs[0][0]
8 const real du2 = uvs[2][0] - uvs[0][0]
9 const real dv1 = uvs[1][1] - uvs[0][1]

10 const real dv2 = uvs[2][1] - uvs[0][1]
11

12 const real idenom = 1.0 / (du1 * dv2 - du2 * dv1)
13 const Vec3& p0 = _particles[0]->GetPos()
14 const Vec3 p1 = _particles[1]->GetPos() - p0
15 const Vec3 p2 = _particles[2]->GetPos() - p0
16

17 Vec3 wu(p1 * dv2 - p2 * dv1)
18 wu *= idenom
19 Vec3 wv(p2 * du1 - p1 * du2)
20 wv *= idenom
21

22 const real nwu = GetLength(wu)
23 const real nwv = GetLength(wv)
24 // Make sure we don’t blow up from small norms
25 const real invLenWu = 1.0 / max(nwu, 1.0E-6)
26 const real invLenWv = 1.0 / max(nwv, 1.0E-6)
27 const Vec3 wuhat = invLenWu * wu
28 const Vec3 wvhat = invLenWv * wv
29

30 Vec3 dwudp
31 dwudp[0] = idenom * (uvs[1][1] - uvs[2][1])
32 dwudp[1] = idenom * (uvs[2][1] - uvs[0][1])
33 dwudp[2] = idenom * (uvs[0][1] - uvs[1][1])
34

35 Vec3 dwvdp;
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36 dwvdp[0] = idenom * (uvs[2][0] - uvs[1][0])
37 dwvdp[1] = idenom * (uvs[0][0] - uvs[2][0])
38 dwvdp[2] = idenom * (uvs[1][0] - uvs[0][0])
39

40 Vec3 dCudp[3]
41 dCudp[0] = dwudp[0] * wuhat
42 dCudp[1] = dwudp[1] * wuhat
43 dCudp[2] = dwudp[2] * wuhat
44

45 Vec3 dCvdp[3];
46 dCvdp[0] = dwvdp[0] * wvhat
47 dCvdp[1] = dwvdp[1] * wvhat
48 dCvdp[2] = dwvdp[2] * wvhat
49

50 const real Cu = nwu - 1
51 const real Cv = nwv - 1
52 const real uKs = _face->GetKsu() * areaUV
53 const real vKs = _face->GetKsv() * areaUV
54 const real uKd = _face->GetKdu() * areaUV
55 const real vKd = _face->GetKdv() * areaUV
56 real CuDot = 0.0
57 real CvDot = 0.0
58 for (i = 0; i < 3; i++) {
59 const Vec3& vel = _particles[i]->GetVel()
60 CuDot += Dot(dCudp[i], vel)
61 CvDot += Dot(dCvdp[i], vel)
62 }
63

64 SymBlock33 ScaledProjWuhat
65 ScaledProjWuhat.SetScaledComplement(invLenWu, wuhat)
66 SymBlock33 ScaledProjWvhat
67 ScaledProjWvhat.SetScaledComplement(invLenWv, wvhat)
68

69 const real uGradFullScalar = (-uKs * Cu - uKd * CuDot)
70 const real vGradFullScalar = (-vKs * Cv - vKd * CvDot)
71

72 // If we insist on including the second partial term fpr
73 // damping, we must make sure it does not become positive or
74 // dfdx can become indefinite. If GradFullScalar becomes
75 // positive , we drop the term.
76 const real uGradScalar = uGradFullScalar > 0.0 ? -uKs * Cu :

uGradFullScalar
77 const real vGradScalar = vGradFullScalar > 0.0 ? -vKs * Cv :

vGradFullScalar
78

79 // CShear = cosine of angle between wuhat and wvhat
80 const real CShear = Dot(wuhat, wvhat)
81 // [I-wuhat*wuhat^T]wvhat
82 const Vec3 wvhatProjOutWuhat = ProjectOut(wvhat, wuhat)
83 // [I-wvhat*wvhat^T]wuhat
84 const Vec3 wuhatProjOutWvhat = ProjectOut(wuhat, wvhat)
85

86 Vec3 dCSheardp[3]
87 real CShearDot = 0.0
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88 for (i = 0; i < 3; i++) {
89 dCSheardp[i] = invLenWu * dwudp[i] * wvhatProjOutWuhat
90 dCSheardp[i] += invLenWv * dwvdp[i] * wuhatProjOutWvhat
91 CShearDot += Dot(dCSheardp[i], _particles[i]->GetVel())
92 }
93

94 const real shearKs = _face->GetShearKs() * areaUV
95 const real shearKd = _face->GetShearKd() * areaUV
96 const real shearMag = -shearKs * CShear - shearKd * CShearDot
97

98 Vec3 shearKsddCSheardpi , shearKddCSheardpi
99 Vec3 stretchKsdCuDdPi , stretchKsdCvDdPi
100 Vec3 stretchKdDCudPi , stretchKdDCvdPi
101

102 const bool CuPositive = Cu >= 0.0
103 const bool CvPositive = Cv >= 0.0
104

105 for (i = 0; i < 3; i++)
106 {
107 // _localPairToArrayIndex maps index pairs to upper diagonal
108 // block array index. See pseudocode in Chapter 12.
109 blkIdx = _localPairToArrayIndex(i, i);
110 _forces[i] += uGradFullScalar * dCudp[i]
111 _forces[i] += vGradFullScalar * dCvdp[i]
112 _forces[i] += shearMag * dCSheardp[i]
113 // Stretch terms
114 _dfdx[blkIdx].AddScaledOuterProd(-uKs, dCudp[i])
115 _dfdx[blkIdx].AddScaledOuterProd(-vKs, dCvdp[i])
116

117 if (CuPositive) {
118 const real scalarU = uGradScalar * dwudp[i] * dwudp[i]
119 _dfdx[blkIdx].AddScalarMultiple(scalarU, ScaledProjWuhat)
120 }
121

122 if (CvPositive) {
123 const real scalarV = vGradScalar * dwvdp[i] * dwvdp[i]
124 _dfdx[blkIdx].AddScalarMultiple(scalarV, ScaledProjWvhat)
125 }
126 // Shear terms
127 _dfdx[blkIdx].AddScaledOuterProd(-shearKs, dCSheardp[i])
128 _dfdv[blkIdx].AddScaledOuterProd(-shearKd, dCSheardp[i])
129 _dfdv[blkIdx].AddScaledOuterProd(-uKd, dCudp[i])
130 _dfdv[blkIdx].AddScaledOuterProd(-vKd, dCvdp[i])
131

132 const Vec3 stretchKsdCuDdPi = -uKs * dCudp[i]
133 const Vec3 stretchKdDCudPi = -uKd * dCudp[i]
134 const Vec3 stretchKsdCvDdPi = -vKs * dCvdp[i]
135 const Vec3 stretchKdDCvdPi = -vKd * dCvdp[i]
136 const Vec3 shearKsddCSheardpi = -shearKs * dCSheardp[i]
137 const Vec3 shearKddCSheardpi = -shearKd * dCSheardp[i]
138

139 for (j = i + 1; j < 3; j++)
140 {
141 blkIdx = _localPairToArrayIndex(i, j)
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142 // Stretch terms
143 _dfdx[blkIdx].AddOuterProd(stretchKsdCuDdPi , dCudp[j])
144 _dfdx[blkIdx].AddOuterProd(stretchKsdCvDdPi , dCvdp[j])
145 _dfdv[blkIdx].AddOuterProd(stretchKdDCudPi , dCudp[j])
146 _dfdv[blkIdx].AddOuterProd(stretchKdDCvdPi , dCvdp[j])
147

148 if (CuPositive) {
149 const real scalarU = uGradScalar * dwudp[i] * dwudp[j]
150 _dfdx[blkIdx].AddScalarMultiple(scalarU, ScaledProjWuhat)
151 }
152 if (CvPositive) {
153 const real scalarV = vGradScalar * dwvdp[i] * dwvdp[j]
154 _dfdx[blkIdx].AddScalarMultiple(scalarV, ScaledProjWvhat)
155 }
156 // Shear terms
157 // Off diagonal local blocks will need to be examined
158 // for transpose before being accumulated into the global
159 // system block entries, because off-digaonl shear blocks
160 // are NOT symmetric like the onese from stretch.
161 _dfdx[blkIdx].AddOuterProd(dCSheardp[j], shearKsddCSheardpi)
162 _dfdv[blkIdx].AddOuterProd(dCSheardp[j], shearKddCSheardpi)
163 }
164 }
165 }
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Appendix H

Thin Shell Bending Pseudocode

1 ////////////////////////////////////////////////////////
2 // p2
3 // / | \
4 // / | \
5 // / | \
6 // p0 n0|n1 p3
7 // \ | /
8 // \ | /
9 // \ | /

10 // p1
11 //
12 // e = p2 - p1 == p12
13 // n0 = p01 X p02
14 // n1 = p32 X p31
15 //
16 void DihedralEdge::ComputeBendForcesAndJacobians()
17 {
18 Face* f0 = _edge->GetFace(0)
19 Face* f1 = _edge->GetFace(1)
20

21 const Vec3 p[4] = {_particles[0]->GetPos(),
22 _particles[1]->GetPos(),
23 _particles[2]->GetPos(),
24 _particles[3]->GetPos()}
25

26 const Vec3 p12 = p2 - p1
27 const Vec3 p02 = p2 - p0
28 const Vec3 p32 = p2 - p3
29 const Vec3 p01 = p1 - p0
30 const Vec3 p31 = p1 - p3
31

32 const Vec3 n0hat = f0->GetNormal()
33 const Vec3 n1hat = f1->GetNormal()
34 const Vec3 ehat = GetNormalized(p12)
35
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36 const real sinTheta = Clamp(Dot(Cross(n0hat, n1hat), ehat), -1.0, 1.0)
37 const real cosTheta = Clamp(Dot(n0hat, n1hat), -1.0, 1.0)
38

39 // One needs to clamp the inverse of the normal length from
40 // becoming too small to prevent numerical issues including poor
41 // conditioning of the linear system.
42 const real invN0Mag = 1.0 / max(f0->_nMag, 0.1 * f0->GetAreaUV())
43 const real invN1Mag = 1.0 / max(f1->_nMag, 0.1 * f1->GetAreaUV())
44

45 // Effect of [I-n0hat*n0hat^T] on n1hat
46 const Vec3 projectN0OutFromN1 = ProjectOut(n1hat, n0hat)
47 // Effect of [I-n1hat*n1hat^T] on n0hat
48 const Vec3 projectN1OutFromN0 = ProjectOut(n0hat, n1hat)
49

50 Vec3 dCosThetadP[4]
51 dCosThetadP[0] = -invN0Mag * Cross(p12, projectN0OutFromN1)
52

53 dCosThetadP[1] = -invN0Mag * Cross(-p02, projectN0OutFromN1)
54 dCosThetadP[1] += -invN1Mag * Cross(p32, projectN1OutFromN0)
55

56 dCosThetadP[2] = -invN0Mag * Cross(p01, projectN0OutFromN1)
57 dCosThetadP[2] += -invN1Mag * Cross(-p31, projectN1OutFromN0)
58

59 dCosThetadP[3] = -invN1Mag * Cross(-p12, projectN1OutFromN0)
60

61 const Vec3 n0hatXehat = Cross(n0hat, ehat)
62 const Vec3 n1hatXehat = Cross(n1hat, ehat)
63 // Effect of [I-n1hat*n1hat^T] on n0hatXehat
64 const Vec3 projOutN1Dir = ProjectOut(n0hatXehat , n1hat)
65 // Effect of [I-n0hat*n0hat^T] on n1hatXehat
66 const Vec3 projOutN0Dir = ProjectOut(n1hatXehat , n0hat)
67

68 Vec3 dSinThetadP[4]
69 dSinThetadP[0] = -invN0Mag * Cross(p12, projOutN0Dir)
70

71 dSinThetadP[1] = invN1Mag * Cross(p32, projOutN1Dir)
72 dSinThetadP[1] += -invN0Mag * Cross(-p02, projOutN0Dir)
73

74 dSinThetadP[2] = invN1Mag * Cross(-p31, projOutN1Dir)
75 dSinThetadP[2] += -invN0Mag * Cross(p01, projOutN0Dir)
76

77 dSinThetadP[3] = invN1Mag * Cross(-p12, projOutN1Dir)
78

79 Vec3 dThetadP[4]
80 real thetaDot = 0.0
81

82 for (i = 0; i < 4; i++)
83 {
84 dThetadP[i] = dSinThetadP[i]
85 dThetadP[i] *= cosTheta
86 dThetadP[i] -= sinTheta * dCosThetadP[i]
87 thetaDot += Dot(dThetadP[i], _particles[i]->GetVel())
88 }
89
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90 const real theta = atan2(sinTheta, cosTheta)
91 const real thetaRest = _edge->GetThetaRest()
92

93 // Note: thetaDist does not account for windings
94 const real thetaDist = theta - thetaRest
95 // Compute scaling factor based on a factor of the average
96 // height and area of incident faces in material space.
97 const real scaleFactor = ComputeScaleFactor(f0,f1)
98 const ksTilde = scalefactor * _edge->GetBendStiffness()
99 const kdTilde = scalefactor * _edge->GetBendDamping()
100 const real mag = -ksTilde * thetaDist + -kdTilde * thetaDot
101

102 Vec3 spatialK_dThetadPi
103 Vec3 kd_dThetadPi
104 int blockIdxII , blockIdxIJ
105

106 for (i = 0; i < 4; i++)
107 {
108 _force[i] += mag * dThetadP[i];
109 spatialK_dThetadPi = -ksTilde * dThetadP[i];
110 kd_dThetadPi = -kdTilde * dThetadP[i];
111 // _localPairToArrayIndex maps index pairs to upper diagonal
112 // block array index. See pseudocode in Chapter 12.
113 blockIdxII = _localPairToArrayIndex(i,i)
114 _dfdx[blockIdxII].AddOuterProd(spatialK_dThetadPi , dThetadP[i])
115 _dfdv[blockIdxII].AddOuterProd(kd_dThetadPi , dThetadP[i])
116

117 for (j = i + 1; j < 4; j++)
118 {
119 blockIdxIJ = _localPairToArrayIndex(i,j)
120 // Off diagonal local blocks will need to be examined
121 // for transpose before being accumulated into the global
122 // system block entries.
123 _dfdx[blockIdxIJ].AddOuterProd(spatialK_dThetadPi , dThetadP[j])
124 _dfdv[blockIdxIJ].AddOuterProd(kd_dThetadPi , dThetadP[j])
125 }
126 }
127 }

234



I. Computing the Derivatives of a Triangle (and Edge) Normal

Appendix I

Computing the Derivatives of a Trian-
gle (and Edge) Normal

I.1 The Triangle Normal Gradient
You’ve probably been sent here by Chapter 14, after being told some horror story about
how computing ∂n

∂x has broken the will of many a brave student, leaving a trail thick with
shattered ambitions, like the ending of The Lady From Shanghai (1947).

Don’t worry. Whoever told you that is just trying to act like they’re the only one who
can pull the ∂n

∂x Excalibur from the stone. It’s not a big deal once you see that it’s really a
3rdorder tensor, sneakily disguised as a matrix.

Just to review, we’re looking at a triangle with vertices x1,x2,x3, arranged in clockwise
order (see Fig. 14.1 for a refresher). There’s also a vertex x0 defined, which is the vertex
that is colliding with the current triangle. Thus, there’s a big caveat here: everything
you’ll see here is arranged for vertex-face collision force computation. If you’re looking
to compute the normal gradient for some other purpose, you’ll need to figure out how
to tweak the formulas here to suit your own needs. Once you see through the 3rdorder
tensor disguise though, hopefully this will be much easier.

Anyway, back to the show. The normal is then defined as:

e0 = x3 − x2 e1 = x0 − x2 e2 = x1 − x2 (I.1)

n =
e2 × e0

‖e2 × e0‖
. (I.2)
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Just like in Chapter 14, let’s go ahead and stack all three vertices into a vector x:

x =


x0

x1

x2

x3

 ∈ <12. (I.3)

Keeping with our existing convention, every scalar entry in x can then be written as xi.
As usual, taking the derivative of anything with respect to a scalar is straightforward,
and n is no exception. Applying the chain rule, we get:

∂n

∂xi
=

1

‖z‖
∂z

∂xi
−

zT ∂z
∂xi(

zT z
) 3

2

z (I.4)

z = e2 × e0. (I.5)

For convenience, we’ve abbreviated the cross product as z. This isn’t so bad, right? We
can see ∂n

∂xi
∈ <3, so it’s a friendly-looking 3-vector. There’s a few pieces we haven’t

defined yet, like ∂z
∂xi

, but otherwise, this looks fairly tame. What’s the big deal? Nothing
here to drive us into the mouth of madness.

The difficulty appears if you try to write down some some master expression for the
whole thing, ∂n∂x . Don’t do it. It looks like it should yield a nice matrix ∂n

∂x ∈ <
3×12, but

don’t be fooled. It’s actually a 3rdorder tensor, ∂n∂x ∈ <
3×1×12. Writing down each individual

<3×1 entry is straightforward, but trying to write down something simple and compact
for the whole <3×12 matrix will drive you nuts. The structure lives in the <3×1 blocks,
not the untamed <3×12 monster.

If we can write down an expression for ∂z
∂xi

, then we’re home free. With that in hand,
you can compute each ∂n

∂xi
, and stack all the results together into ∂n

∂x . Getting each ∂z
∂xi

is
tedious, but straightforward. As an example, let’s look at:

∂z

∂x0
=
∂e2 × e0

∂x0
=

 0
e0,z − e2,z

−e0,y + e2,y

 . (I.6)

I know. I abused the notation here, andwrote junk like e0,z , whichmeans the z component
of e0, and e2,y, which means the y component of e2. I promise I won’t make a habit of
it. The point is, each ∂z

∂xi
should work out to some simple expression. In fact, we can go

ahead and get rid of the abusive notation, because e0 = x3 − x2, so we should be able to
replace e0,z with x3,z − x2,z = x11 − x8.
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Chugging through this way, we can get expressions for all ∂z
∂xi

:

∂z

∂x0
=

 0
x5 − x11

x10 − x4

 ∂z

∂x1
=

x11 − x5

0
x3 − x9

 ∂z

∂x2
=

x4 − x10

x9 − x3

0

 (I.7)

∂z

∂x3
=

 0
x11 − x2

x1 − x10

 ∂z

∂x4
=

x2 − x11

0
x9 − x0

 ∂z

∂x5
=

x10 − x1

x0 − x9

0

 (I.8)

∂z

∂x9
=

 0
x2 − x5

x4 − x1

 ∂z

∂x10
=

x5 − x2

0
x0 − x3

 ∂z

∂x11
=

x1 − x4

x3 − x0

0

 . (I.9)

∂z

∂x6
=

∂z

∂x7
=

∂z

∂x8
=

0
0
0

 . (I.10)

This sure is a lot of tedious data entry. If you’re hoping that I already typed this all up
and debugged it for you, you’re in luck! A Matlab implementation is in Fig. I.1, and a
C++ implementation is in Fig. I.2. These are written in terms of the e edges, not the xi
entries in x, so there might be some code micro-optimizations that can be introduced
here, if you’re so inclined.

Once you have these in hand, you can compute the complete normal gradient ∂n∂x by
stacking together all the individual ∂n

∂xi
terms. At that point, you’re welcome to treat

the result as just a vanilla matrix, such as when computing the ∂n
∂x

T
t term in Eqn. 14.20.

Matlab and C++ code for the full ∂n∂x computation is available in Figs. I.3 and I.4.

There. All done. No need to hide in the basement just because ∂n
∂x appeared at your front

door.

I.2 The Triangle Normal Hessian
Just kidding, this horror movie has a sequel. Just when you thought you were safe from
∂n
∂x , its bigger, meaner cousin, ∂2n

∂x2 , is needed in Hessians like Eqn. 14.15. Fortunately,
we’re not looking at an Alien (1979) to Aliens (1986) jump in horror here, necessitating
the deployment of innovative new techniques like nuking it from orbit. We’re more in
the realm of Final Destination (2000) to Final Destination 5 (2011), where once you know
the basic premise, the rest is a tedious retread of more-or-less the same thing.

This time around, ∂2n
∂x2 looks like it should be a 3rdorder tensor, i.e. <3×12×12. But just

like last time, it’s sneakily an order larger, <3×1×12×12. More importantly, all the basic
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1 function [final] = cross_gradient(x)
2 v0 = x(1:3);
3 v1 = x(4:6);
4 v2 = x(7:9);
5 v3 = x(10:12);
6
7 e0 = v1 - v0;
8 e1 = v2 - v0;
9 e2 = v3 - v0;

10
11 crossMatrix = zeros(3, 12);
12 e0x = e0(1);
13 e0y = e0(2);
14 e0z = e0(3);
15
16 e2x = e2(1);
17 e2y = e2(2);
18 e2z = e2(3);
19
20 crossMatrix(:,1) = [0;
21 (e0z - e2z);
22 (-e0y + e2y)];
23 crossMatrix(:,2) = [(-e0z + e2z);
24 0;
25 (e0x - e2x)];
26 crossMatrix(:,3) = [(e0y - e2y);
27 (-e0x + e2x);
28 0];
29 crossMatrix(:,4) = [0;
30 e2z;
31 -e2y];
32 crossMatrix(:,5) = [-e2z;
33 0;
34 e2x];
35 crossMatrix(:,6) = [e2y;
36 -e2x;
37 0];
38 crossMatrix(:,7) = [0 0 0]’;
39 crossMatrix(:,8) = [0 0 0]’;
40 crossMatrix(:,9) = [0 0 0]’;
41 crossMatrix(:,10) = [0;
42 -e0z;
43 e0y];
44 crossMatrix(:,11) = [e0z;
45 0;
46 -e0x];
47 crossMatrix(:,12) = [-e0y;
48 e0x;
49 0];
50
51 final = crossMatrix;
52 end

Figure I.1.: Matlab implementation of the ∂z
∂x = ∂e2×e0

∂x term needed by ∂n
∂x , which is

needed in Eqn. I.4.

structure still just lives in each <3 entry. We can write down each <3 entry as follows:

∂2n

∂xi∂xj
=

−1(
zT z

) 3
2

(
∂z

∂xj

T

z

)
∂z

∂xi
+

1

‖z‖
∂2z

∂xi∂xj
− α ∂z

∂xj
− ∂α

∂xj
z (I.11)
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1 ///////////////////////////////////////////////////////////////////////
2 // gradient of the cross product used to compute the triangle normal,
3 // vertex-face case
4 ///////////////////////////////////////////////////////////////////////
5 MATRIX3x12 crossGradientVF(const std::vector<VECTOR3 >& e)
6 {
7 MATRIX3x12 crossMatrix;
8
9 const REAL e0x = e[0][0];

10 const REAL e0y = e[0][1];
11 const REAL e0z = e[0][2];
12
13 const REAL e2x = e[2][0];
14 const REAL e2y = e[2][1];
15 const REAL e2z = e[2][2];
16
17 crossMatrix.col(0) = VECTOR3(0, 0, 0);
18 crossMatrix.col(1) = VECTOR3(0, 0, 0);
19 crossMatrix.col(2) = VECTOR3(0, 0, 0);
20 crossMatrix.col(3) = VECTOR3(0, -e0z, e0y);
21 crossMatrix.col(4) = VECTOR3(e0z, 0, -e0x);
22 crossMatrix.col(5) = VECTOR3(-e0y, e0x, 0);
23 crossMatrix.col(6) = VECTOR3(0, (e0z - e2z), (-e0y + e2y));
24 crossMatrix.col(7) = VECTOR3((-e0z + e2z), 0, (e0x - e2x));
25 crossMatrix.col(8) = VECTOR3((e0y - e2y), (-e0x + e2x), 0);
26 crossMatrix.col(9) = VECTOR3(0, e2z, -e2y);
27 crossMatrix.col(10) = VECTOR3(-e2z, 0, e2x);
28 crossMatrix.col(11) = VECTOR3(e2y, -e2x, 0);
29
30 return crossMatrix;
31 }

Figure I.2.: C++ implementation of the ∂z
∂x = ∂e2×e0

∂x term needed by ∂n
∂x , which is needed

in Eqn. I.4.

Just to make things a little tidier later on, I’ve pulled off the following factor:

α =
zT ∂z

∂xi(
zT z

) 3
2

. (I.12)

Two terms have now appeared that we don’t already have in hand from before: ∂α∂xj and
∂2z

∂xi∂xj
. The first one’s just a scalar, so we can derive it directly:

∂α

∂xj
=

∂z
∂xj

T ∂z
∂xi(

zT z
) 3

2

+
zT ∂2z

∂xi∂xj(
zT z

) 3
2

− 3
zT ∂z

∂xi(
zT z

) 5
2

(
∂z

∂xj

T

z

)
. (I.13)

The second term, ∂2z
∂xi∂xj

, is where all the haven’t-we-see-this-all-before tedium comes in.
We have all the first derivatives of z in Eqns. I.7-I.9, so now we need to chug through and
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1 function [final] = normal_gradient(x)
2 v0 = x(1:3);
3 v1 = x(4:6);
4 v2 = x(7:9);
5 v3 = x(10:12);
6
7 e0 = v1 - v0;
8 e1 = v2 - v0;
9 e2 = v3 - v0;

10
11 crossed = cross(e2, e0);
12 crossNorm = norm(crossed);
13 crossNormCubed = (crossed’ * crossed)^(1.5);
14 crossMatrix = cross_gradient(x);
15
16 final = zeros(3,12);
17 for i = 1:12
18 crossColumn = crossMatrix(:,i);
19 final(:,i) = (1 / crossNorm) * crossColumn - ((crossed’ * crossColumn) /

crossNormCubed) * crossed;
20 end
21 end

Figure I.3.: Matlab implementation of ∂n∂x . The cross product gradient,
∂z
∂x = ∂e2×e0

∂x , called
via cross_gradient, is given in Fig. I.1.

1 ///////////////////////////////////////////////////////////////////////
2 // gradient of the triangle normal, vertex-face case
3 ///////////////////////////////////////////////////////////////////////
4 MATRIX3x12 normalGradientVF(const std::vector<VECTOR3 >& e)
5 {
6 VECTOR3 crossed = e[2].cross(e[0]);
7 REAL crossNorm = crossed.norm();
8 const REAL crossNormCubedInv = 1.0 / pow(crossed.dot(crossed), 1.5);
9 MATRIX3x12 crossMatrix = crossGradientVF(e);

10
11 MATRIX3x12 result;
12 for (int i = 0; i < 12; i++)
13 {
14 const VECTOR3 crossColumn = crossMatrix.col(i);
15 result.col(i) = (1.0 / crossNorm) * crossColumn -
16 ((crossed.dot(crossColumn)) * crossNormCubedInv) * crossed;
17 }
18 return result;
19 }

Figure I.4.: C++ implementation of ∂n∂x . The cross product gradient,
∂z
∂x = ∂e2×e0

∂x , called
via crossGradientVF, is given in Fig. I.2. Equivalent lines from the Matlab
implementation are inlined in the comments.

take the scalar derivatives of all of those, again, with respect to the second variable.
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Ugh, like a said, it’s all just a tedious retread. There’s a lot of redundancy in these results
though, so you can boil it down to a few mildly less ugly-looking cases:
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Once again, to rescue you from data entry errors, I provide Matlab and C++ implementa-
tions for ∂2z

∂x2 in Figs. I.5 and I.6.

1 function [final] = cross_hessian(i,j)
2 if (i > j)
3 temp = j;
4 j = i;
5 i = temp;
6 end
7
8 % use zero indexing, because we’re not cretins
9 i = i - 1;

10 j = j - 1;
11
12 if ((i == 1 && j == 11) || (i == 2 && j == 4) || (i == 5 && j == 10))
13 final = [1 0 0]’;
14 return;
15 end
16
17 if ((i == 0 && j == 5) || (i == 2 && j == 9) || (i == 3 && j == 11))
18 final = [0 1 0]’;
19 return;
20 end
21
22 if ((i == 0 && j == 10) || (i == 1 && j == 3) || (i == 4 && j == 9))
23 final = [0 0 1]’;
24 return;
25 end
26
27 if ((i == 1 && j == 5) || (i == 2 && j == 10) || (i == 4 && j == 11))
28 final = [-1 0 0]’;
29 return;
30 end
31
32 if ((i == 0 && j == 11) || (i == 2 && j == 3) || (i == 5 && j == 9))
33 final = [0 -1 0]’;
34 return;
35 end
36
37 if ((i == 0 && j == 4) || (i == 1 && j == 9) || (i == 3 && j == 10))
38 final = [0 0 -1]’;
39 return;
40 end
41
42 final = [0 0 0]’;
43 end

Figure I.5.: Matlab implementation of the cross product Hessian, ∂2z
∂x2 = ∂2e2×e0

∂x2 , needed
by the normal Hessian in Fig. I.7. This encodes all the cases specified in
Eqns. I.23-I.28.

With that in hand, we have all the terms needed for the full normal Hessian, Eqn. I.11.
The Matlab and C++ code is in Figs. I.7 and I.8. There. I sat through the terrible sequel so
you didn’t have to. Will this ever turn into a trilogy? Will you ever need ∂3n

∂x3 ? We seem
safe for now, but you never know when some relative of Jason Voorhees might bubble
up again from the bottom of the lake ...
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1 ///////////////////////////////////////////////////////////////////////
2 // one entry of the rank-3 hessian of the cross product used to compute
3 // the triangle normal, vertex-face case
4 ///////////////////////////////////////////////////////////////////////
5 VECTOR3 crossHessianVF(const int iIn, const int jIn)
6 {
7 int i = iIn;
8 int j = jIn;
9

10 if (i > j)
11 {
12 int temp = j;
13 j = i;
14 i = temp;
15 }
16
17 if ((i == 5 && j == 7) || (i == 8 && j == 10) || (i == 4 && j == 11))
18 return VECTOR3(1, 0, 0);
19
20 if ((i == 6 && j == 11) || (i == 3 && j == 8) || (i == 5 && j == 9))
21 return VECTOR3(0, 1, 0);
22
23 if ((i == 4 && j == 6) || (i == 7 && j == 9) || (i == 3 && j == 10))
24 return VECTOR3(0, 0, 1);
25
26 if ((i == 7 && j == 11) || (i == 4 && j == 8) || (i == 5 && j == 10))
27 return VECTOR3(-1, 0, 0);
28
29 if ((i == 5 && j == 6) || (i == 8 && j == 9) || (i == 3 && j == 11))
30 return VECTOR3(0, -1, 0);
31
32 if ((i == 6 && j == 10) || (i == 3 && j == 7) || (i == 4 && j == 9))
33 return VECTOR3(0, 0, -1);
34
35 return VECTOR3(0, 0, 0);
36 }

Figure I.6.: C++ implementation of the cross product Hessian, ∂2z
∂x2 = ∂2e2×e0

∂x2 , needed
by the normal Hessian in Fig. I.8. This encodes all the cases specified in
Eqns. I.23-I.28.

I.3 The Edge-Edge Normal Gradient
What’re you doing back here? Probably sent here by §14.6 because it turns out the normal
gradients for edge-edge collisions are not exactly the same as the vertex-face case. Again,
it’s not an Alien (1979) to Aliens (1986) level jump in difficulty. This time it’s more of a
return to comfortable familiarity, like Blade (1998) to Blade 2 (2002).1

1For some reason, this Guillermo del Toro film doesn’t get mentioned in the same breath as other
improbably good sequels like Spiderman 2 (2004) or The Godfather Part II (1974), but I’d watch it over Pan’s
Labyrinth (2006) any day.
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1 function [xSlab ySlab zSlab] = normal_hessian(x)
2 v0 = x(1:3);
3 v1 = x(4:6);
4 v2 = x(7:9);
5 v3 = x(10:12);
6
7 e0 = v1 - v0;
8 e1 = v2 - v0;
9 e2 = v3 - v0;

10
11 crossed = cross(e2, e0);
12 crossNorm = norm(crossed);
13 crossGradient = cross_gradient(x);
14
15 z = crossed;
16 denom15 = (z’ * z) ^ (1.5);
17
18 zGrad = cross_gradient(x);
19
20 xSlab = zeros(12,12);
21 ySlab = zeros(12,12);
22 zSlab = zeros(12,12);
23
24 for j = 1:12
25 for i = 1:12
26 zGradi = crossGradient(:,i);
27 zGradj = crossGradient(:,j);
28 zHessianij = cross_hessian(i,j);
29 alpha = alpha_Psi(x,i);
30 alphaGradj = alpha_gradient(x,i,j);
31
32 entry = -((zGradj’ * z) / denom15) * zGradi + ...
33 1 / norm(z) * zHessianij - alpha * zGradj - alphaGradj * z;
34
35 xSlab(i,j) = entry(1);
36 ySlab(i,j) = entry(2);
37 zSlab(i,j) = entry(3);
38 end
39 end
40 end

Figure I.7.: Matlab implementation of the normal Hessian, ∂2n
∂x2 , as described in Eqn. I.11.

The corresponding cross-product Hessian is provided in Fig. I.5.

This time, the normal is defined as:

e0 = x1 − x0 (I.29)
e1 = x3 − x2 (I.30)
n = e1 × e0. (I.31)

Then we have the same gradient as before,

∂n

∂xi
=

1

‖z‖
∂z

∂xi
−

zT ∂z
∂xi(

zT z
) 3

2

z, (I.32)
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1 ///////////////////////////////////////////////////////////////////////
2 // hessian of the triangle normal, vertex-face case
3 ///////////////////////////////////////////////////////////////////////
4 std::vector<MATRIX12> normalHessianVF(const std::vector<VECTOR3 >& e)
5 {
6 using namespace std;
7
8 vector<MATRIX12> H(3);
9 for (int i = 0; i < 3; i++)

10 H[i].setZero();
11
12 //crossed = cross(e2, e0);
13 //crossNorm = norm(crossed);
14 //crossGradient = cross_gradient(x);
15 VECTOR3 crossed = e[2].cross(e[0]);
16 MATRIX3x12 crossGrad = crossGradientVF(e);
17 const VECTOR3& z = crossed;
18
19 //denom15 = (z’ * z) ^ (1.5);
20 REAL denom15 = pow(crossed.dot(crossed), 1.5);
21 REAL denom25 = pow(crossed.dot(crossed), 2.5);
22
23 for (int j = 0; j < 12; j++)
24 for (int i = 0; i < 12; i++)
25 {
26 VECTOR3 zGradi = crossGrad.col(i);
27 VECTOR3 zGradj = crossGrad.col(j);
28 VECTOR3 zHessianij = crossHessianVF(i,j);
29
30 // z = cross(e2, e0);
31 // zGrad = crossGradientVF(:,i);
32 // alpha= (z’ * zGrad) / (z’ * z) ^ (1.5);
33 REAL a = z.dot(crossGrad.col(i)) / denom15;
34
35 // final = (zGradj’ * zGradi) / denom15 + (z’ * cross_hessian(i,j)) / denom15;
36 // final = final - 3 * ((z’ * zGradi) / denom25) * (zGradj’ * z);
37 REAL aGrad = (zGradj.dot(zGradi)) / denom15 +
38 z.dot(crossHessianVF(i,j)) / denom15;
39 aGrad -= 3.0 * (z.dot(zGradi) / denom25) * zGradj.dot(z);
40
41 //entry = -((zGradj’ * z) / denom15) * zGradi + 1 / norm(z) * zHessianij -
42 // alpha * zGradj - alphaGradj * z;
43 VECTOR3 entry = -((zGradj.dot(z)) / denom15) * zGradi +
44 1.0 / z.norm() * zHessianij - a * zGradj - aGrad * z;
45
46 H[0](i,j) = entry[0];
47 H[1](i,j) = entry[1];
48 H[2](i,j) = entry[2];
49 }
50 return H;
51 }

Figure I.8.: C++ implementation of the normal Hessian, ∂2n
∂x2 , as described in Eqn. I.11.

The corresponding cross-product Hessian is provided in Fig. I.6.

but this time around, z = e1 × e0, and e1 and e0 don’t even mean the same thing as
before. But, even with this slightly new expression, if we can get ∂z

∂xi
= ∂e1×e0

∂xi
squared

away, then we’re done.
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Demonstrating the sort of reckless, irresponsible, gonna-get-us-all-killed behavior that
I would never condone in a graduate student, I just went ahead and implemented
this gradient in C++ first, without verifying things in Matlab. The C++ version of the
edge-edge ∂e1×e0

∂xi
term is given in Fig. I.9, and the full edge-edge ∂n

∂x is available in
Fig. I.10.

1 ///////////////////////////////////////////////////////////////////////
2 // gradient of the cross product used to compute the normal,
3 // edge-edge case
4 ///////////////////////////////////////////////////////////////////////
5 MATRIX3x12 crossGradientEE(const std::vector<VECTOR3 >& e)
6 {
7 MATRIX3x12 crossMatrix;
8
9 const REAL e0x = e[0][0];

10 const REAL e0y = e[0][1];
11 const REAL e0z = e[0][2];
12
13 const REAL e1x = e[1][0];
14 const REAL e1y = e[1][1];
15 const REAL e1z = e[1][2];
16
17 crossMatrix.col(0) = VECTOR3(0, -e1z, e1y);
18 crossMatrix.col(1) = VECTOR3(e1z, 0, -e1x);
19 crossMatrix.col(2) = VECTOR3(-e1y, e1x, 0);
20
21 crossMatrix.col(3) = VECTOR3(0, e1z, -e1y);
22 crossMatrix.col(4) = VECTOR3(-e1z, 0, e1x);
23 crossMatrix.col(5) = VECTOR3(e1y, -e1x, 0);
24
25 crossMatrix.col(6) = VECTOR3(0, e0z, -e0y);
26 crossMatrix.col(7) = VECTOR3(-e0z, 0, e0x);
27 crossMatrix.col(8) = VECTOR3(e0y, -e0x, 0);
28
29 crossMatrix.col(9) = VECTOR3(0, -e0z, e0y);
30 crossMatrix.col(10) = VECTOR3(e0z, 0, -e0x);
31 crossMatrix.col(11) = VECTOR3(-e0y, e0x, 0);
32
33 return crossMatrix;
34 }

Figure I.9.: C++ implementation of the ∂z
∂x = ∂e1×e0

∂x term needed by ∂n
∂x for the edge-edge

case. If you compare this code to Fig. I.2, you see that there’s no VECTOR3(0,
0, 0); entries in this one, because all four vertices are involved in computing
the cross-product this time around.
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1 ///////////////////////////////////////////////////////////////////////
2 // gradient of the normal, edge-edge case
3 ///////////////////////////////////////////////////////////////////////
4 MATRIX3x12 normalGradientEE(const std::vector<VECTOR3 >& e)
5 {
6 VECTOR3 crossed = e[1].cross(e[0]);
7 const REAL crossNorm = crossed.norm();
8 const REAL crossNormInv = (crossNorm > 1e-8) ? 1.0 / crossed.norm() : 0.0;
9 const REAL crossNormCubedInv = (crossNorm > 1e-8) ? 1.0 / pow(crossed.dot(crossed),

1.5) : 0.0;
10 MATRIX3x12 crossMatrix = crossGradientEE(e);
11
12 MATRIX3x12 result;
13 for (int i = 0; i < 12; i++)
14 {
15 const VECTOR3 crossColumn = crossMatrix.col(i);
16 result.col(i) = crossNormInv * crossColumn -
17 ((crossed.dot(crossColumn)) * crossNormCubedInv) * crossed;
18 }
19 return result;
20 }

Figure I.10.: C++ implementation of the ∂n
∂x term needed for the edge-edge case. I put

a bunch of guards in there in case the cross product is degenerate, but the
disciplined thing to do would be to work through the cases in Wang (2014).
Instead, this’ll probably stick around until the code hits some cases that
forces me to come back and revise these lines, cursing my past self for not
doing the right thing in the first place.

I.4 The Edge-Edge Normal Hessian
The Hessian rolls forward analogous to the gradient. Once again, if the normal is defined
slightly differently

e0 = x1 − x0 (I.33)
e1 = x3 − x2 (I.34)
n = e1 × e0, (I.35)

then the ∂2n
∂x2 works out slightly differently. It’s all still ones and zeros arranged in specific

places, but the entries move around since the indices in x move around. Once again,
with a reckless sense of abandon, I implemented the ∂2e1×e0

∂x and ∂2n
∂x terms directly in

C++, and listed them directly in Figs. I.11 and I.12.
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1 ///////////////////////////////////////////////////////////////////////
2 // one entry of the rank-3 hessian of the cross product used to compute
3 // the triangle normal, edge-edge case
4 ///////////////////////////////////////////////////////////////////////
5 VECTOR3 crossHessianEE(const int iIn, const int jIn)
6 {
7 int i = iIn;
8 int j = jIn;
9

10 if (i > j)
11 {
12 int temp = j;
13 j = i;
14 i = temp;
15 }
16
17 if ((i == 1 && j == 11) || (i == 2 && j == 7) ||
18 (i == 4 && j == 8) || (i == 5 && j == 10))
19 return VECTOR3(1, 0, 0);
20
21 if ((i == 0 && j == 8) || (i == 2 && j == 9) ||
22 (i == 3 && j == 11) || (i == 5 && j == 6))
23 return VECTOR3(0, 1, 0);
24
25 if ((i == 0 && j == 10) || (i == 1 && j == 6) ||
26 (i == 3 && j == 7) || (i == 4 && j == 9))
27 return VECTOR3(0, 0, 1);
28
29 if ((i == 1 && j == 8) || (i == 2 && j == 10) ||
30 (i == 4 && j == 11) || (i == 5 && j == 7))
31 return VECTOR3(-1, 0, 0);
32
33 if ((i == 0 && j == 11) || (i == 2 && j == 6) ||
34 (i == 3 && j == 8) || (i == 5 && j == 9))
35 return VECTOR3(0, -1, 0);
36
37 if ((i == 0 && j == 7) || (i == 1 && j == 9) ||
38 (i == 3 && j == 10) || (i == 4 && j == 6))
39 return VECTOR3(0, 0, -1);
40
41 return VECTOR3(0, 0, 0);
42 }

Figure I.11.: C++ implementation of the ∂2z
∂x2 = ∂2e1×e0

∂x2 term needed by ∂2n
∂x2 for the

edge-edge case.
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1 ///////////////////////////////////////////////////////////////////////
2 // hessian of the triangle normal, edge-edge case
3 ///////////////////////////////////////////////////////////////////////
4 std::vector<MATRIX12> normalHessianEE(const std::vector<VECTOR3 >& e)
5 {
6 using namespace std;
7
8 vector<MATRIX12> H(3);
9 for (int i = 0; i < 3; i++)

10 H[i].setZero();
11
12 VECTOR3 crossed = e[1].cross(e[0]);
13 MATRIX3x12 crossGrad = crossGradientEE(e);
14 const VECTOR3& z = crossed;
15
16 //denom15 = (z’ * z) ^ (1.5);
17 REAL denom15 = pow(crossed.dot(crossed), 1.5);
18 REAL denom25 = pow(crossed.dot(crossed), 2.5);
19
20 for (int j = 0; j < 12; j++)
21 for (int i = 0; i < 12; i++)
22 {
23 VECTOR3 zGradi = crossGrad.col(i);
24 VECTOR3 zGradj = crossGrad.col(j);
25 VECTOR3 zHessianij = crossHessianEE(i,j);
26
27 // z = cross(e2, e0);
28 // zGrad = crossGradientVF(:,i);
29 // alpha= (z’ * zGrad) / (z’ * z) ^ (1.5);
30 REAL a = z.dot(crossGrad.col(i)) / denom15;
31
32 // final = (zGradj’ * zGradi) / denom15 + (z’ * cross_hessian(i,j)) / denom15;
33 // final = final - 3 * ((z’ * zGradi) / denom25) * (zGradj’ * z);
34 REAL aGrad = (zGradj.dot(zGradi)) / denom15 +
35 z.dot(crossHessianEE(i,j)) / denom15;
36 aGrad -= 3.0 * (z.dot(zGradi) / denom25) * zGradj.dot(z);
37
38 //entry = -((zGradj’ * z) / denom15) * zGradi +
39 // 1 / norm(z) * zHessianij -
40 // alpha * zGradj - alphaGradj * z;
41 VECTOR3 entry = -((zGradj.dot(z)) / denom15) * zGradi +
42 1.0 / z.norm() * zHessianij -
43 a * zGradj - aGrad * z;
44
45 H[0](i,j) = entry[0];
46 H[1](i,j) = entry[1];
47 H[2](i,j) = entry[2];
48 }
49 return H;
50 }

Figure I.12.: C++ implementation of the ∂2n
∂x2 term needed for the edge-edge case.
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Appendix J

The HOBAK C++ Code

The HOBAK library was written entirely by Theodore Kim1. It is intended to illustrate
many of the concepts from the course as clearly as possible, and as a consequence is
currently not optimized for performance. Readers beware: anybody claiming a 5X speed
win over this code is not actually claiming that much.

Some optimizations that it would be painful to live without have been implemented in
child classesnamed*_FASTER. For example, there are theTET_MESH andTET_MESH_FASTER
classes. If you want to see readable version of stiffness matrix assembly, look at:

TET_MESH::computeHyperelasticClampedHessian().

If you want to see a version that’s not as painfully slow, take a look at:

TET_MESH_FASTER::computeHyperelasticClampedHessian().

HOBAK is Korean for squash or pumpkin. This is library for squashing things.

J.1 Coding Conventions
• All class names follow MACRO_CASE, i.e. all-caps separated by underscores.

• All variables follow camel case, e.g. tetMesh. Function names also follow this
convention, e.g. computeSurfaceTriangles().

• All member variables begin with a leading underscore, followed by the camel case
variable name, e.g. _triangles and _vertices.

• Instead of float or double, we use REAL, which is defined in SETTINGS.h at the
topmost directory. I supposed I could have done this with templates instead, but
that seemed so very ugly.

1In part to avoid the rights issues surrounding code that David Eberle writes.
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• All tabs are two spaces, not actual tabs.

J.2 Quick Start
HOBAK is designed to build and run with the smallest number of dependencies possible.
All the necessary external libraries are already included in the HOBAK/ext directory.
Hopefully, you will not need to download anything else.

The fastest way to get up and running is to pick a build architecture, and call ‘make‘ on
it. From the top level HOBAK directory, to build on Linux, just call make linux. It should
put everything where it needs to go, build the simulateScenes project, and run a Bunny
Drop simulation.

If you want to build on a Mac, just call make mac. This one might give you a build error
saying it can’t find GLUT, in which case you need to install XQuartz, because apparently
Mac is just toooo goooood to have GLUT installed by default.

If you have a version of g++ installed that supports OpenMP (the default Mac compiler,
clang, does not), you can alternatively build everything on the Mac by calling make
mac_omp. It will expect that g++ already points to an OpenMP-capable compiler.

J.3 Building Other Projects
To build a project in HOBAK , you first need to pick an architecture. If you called make
linux or make mac, then it already picked for you.

If you want to pick by hand, go to HOBAK/projects/, and copy one of the include_top
files to include_top.mk. For example, to build on Linux, call cp include_top.linux
include_top.mk. Again, if you already ran make linux, this was already done for you.

From there, if you want to build a specific project, go to its directory and call make
depend, followed by make. For example, to build the regression test suite, do:

cd projects/regressionTests
make depend
make

You only need to call make depend once. It will build the dependency files, i.e. which files
depend on which headers. After calling it once, you should only need to call make from
then on. You should only need to run make depend again if you change the dependencies,
such as adding a new file to the Makefile, or changing a header.2

J.4 Running the Code
Everything shouldbe run from the./bindirectory. Tobuild and then runregressionTests
on Linux, we would do:

2I am aware that there are these thingies called scons and cmake and I have strong opinions:
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cd projects/regressionTests
make depend
make
cd ../../bin
./regressionTests

Projects that pop up anOpenGLwindow, like simulateScenes or replayScenes support
the following keyboard commands:

• awill start and stop the animation.

• q will quit, and write out a JSON file of simulation data and a QuickTime movie of
the animation. You need to have FFMPEG installed for the movie write to succeed.

• Q or Escwill quit without writing anything out.

J.5 Unit Testing
Some basic unit testing has been implemented using the Catch2 library. The following
should build and run the unit tests:

cd projects/unitTests
make depend
make
cd ../../bin
./unitTests

Note: On the Mac, clang currently doesn’t seem to like Catch2. However, building with
g++ installed through Homebrew seems to work just fine.

J.6 What’s Missing
A bunch of features are missing, mostly because my coding time is limited. If you want
to see these features implemented, either add them yourself or give me a grant.

• Continuous Collision Detection (CCD) and Global Intersection Analysis (GIA): If
something weird happens under violent collisions, e.g. triangles get snagged,
this is probably why.

• Line Search: If the simulation explodes, this is probably why.

• Shells and Strands: For now, you can fake it with really thin tet meshes.
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J.7 External Libraries
HOBAK uses the following external libraries, all of which are included in the download, so
that we don’t run into versioning issues a year from now.

• Eigen

• Catch2

• RapidJSON

• Spectra

• GLVU

J.8 The tobj File Format
Several tet meshes are provided for you in ./data/ directory, such as a simple cube at
different resolutions, and the bunny at several resolutions, etc. These are stored in a flat,
text-based *.tobj format, which is similar to the popular *.obj format.

Vertices are specified the same way, and are numbered according to the order that they
appear in the file

v 1.0 2.0 1.0

The only new addition is a tetrahedron tag has also been added, denoted t, which
indicates with vertices compose a tetrahedron;

t 100 341 82 900

I sure hope the t tag wasn’t already taken in the *.obj specification, because that will
probably cause somebody some headaches later, and that person could be Future Me.

To make your life slightly easier, I have also included a Gmsh to Tobj converter, under
the project gmshToTobj. It uses the Gmsh loader from Qingnan Zhou’s PyMesh library.
If you want to use some sweet new meshing library like fTetWild by Hu et al. (2020),
you can still go nuts, but then convert its output into a form that HOBAK can ingest when
you’re all done.
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