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Fig. 1. Visualization of all 10 possible boundary conditions, with associated
indices.

1 3D NEUMANN BASIS
For a box domain with six boundary walls, there are 10 possible
combinations of Dirichlet and Neumann boundary conditions (up
to symmetry). Figure 1 is a visualization of all 10 combinations. We
list all the basis functions we derived for these combinations.
1. Six Dirichlet walls:
Oy = a(sin(kxx) cos(kyy) cos(k;z))
@y = b(cos(kxx) sin(kyy) cos(k.z)) (1)
@, = c(cos(kxx) cos(kyy) sin(k.z))
kyx,ky,kz € Z* U 0. The constants a, b, ¢ need to satisfy the diver-
gence free condition: aky + bky + ckz = 0.
2. One Neumann wall, &, at x = 7:
@, = a(sin(kxx) cos(kyy) cos(k;z))
@y = b(cos(kxx) sin(kyy) cos(k.z)) 2)
@, = c(cos(kxx) cos(kyy) sin(k.z))
ky € (Z+ - %) U0, ky,k; € Z* U 0. Divergence free condition:
aky + bky +ck; = 0.
3. Two Neumann walls, ®, at x = 0,x = 7:
@, = a(cos(kxx) cos(kyy) cos(kz))
@y = b(sin(kxx) sin(kyy) cos(k.z)) 3)
@, = c(sin(kxx) cos(kyy) sin(k.z))

kx,ky. k. € Z* V0. Divergence free condition: —aky + bky +ck; = 0.
4. Two Neumann walls for @y at x = 7 and &y at y =

. = a(sin(kxx) cos(kyy) cos(k;z))
@y = b(cos(kxx) sin(kyy) cos(k.z)) 4)
@, = c(cos(kxx) cos(kyy) sin(k.z))
kx.ky € (ZJr - %) U0, k; € Z* U 0. Divergence free condition:
aky + bky +ckz = 0.
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5. Three Neumann walls, ®x at x = 7, &, at y = 7 and @, at
z=1

@y = a(sin(kxx) cos(kyy) cos(k;z))
@y = b(cos(kxx) sin(kyy) cos(k.z)) (5)
@, = c(cos(kyxx) cos(kyy) sin(k,z))

kx,ky. k. € (Z+ - %) U 0. Divergence free condition: aky + bky +

ck, = 0.

6. Three Neumann walls, &, at x = 7,x = 0 and Oy aty = m:

@, = a(cos(kxx) cos(kyy) cos(kzz))
@y = b(sin(kxx) sin(kyy) cos(k,z)) (6)
@, = c(sin(kyx) cos(kyy) sin(k.z))

ky € (Z+ - %) U0, kx, k; € ZT U 0, Divergence free condition:
—akyx + bky +ck; = 0.
7. Four Neumann walls, &, atx = 0,x = rand ®, atz = 0,z = 7:
®y = a(cos(kxx) cos(kyy) sin(k;z))
®y = b(sin(kyx) sin(kyy) sin(k;z)) (7)
@, = c(sin(kxx) cos(kyy) cos(k.z))
kyx,ky, k. € Z* U0. Divergence free condition: —aky +bky —ck, = 0.
8. Four Neumann walls, & at x = 7, &, at y = 7 and &, at
z=0,z=m.

@, = a(sin(kxx) cos(kyy) sin(k;z))
@, = b(cos(kxx) sin(kyy) sin(k.z)) 8)
@, = c(cos(kxx) cos(kyy) cos(kz))
ky,ky € (Z+ - %) U0, k; € Z* U 0. Divergence free condition:
aky +bky —ck; =0
9. Five Neumann walls, ®, at x = , ®yaty=0,y=n and @,
atz =0,z =m:

Oy = a(sin(kxx) sin(kyy) sin(k,z))
@y = b(cos(kxx) cos(kyy) sin(k,z)) 9)
@, = c(cos(kxx) sin(kyy) cos(k.z))
ky € (Z+ - %) U0, ky, k; € Z* U 0. Divergence free condition:
aky —bky —ck; =0
10. Six Neumann walls for all three axes.
®, = a(cos(kxx) sin(kyy) sin(k;z))
®y = b(sin(kxx) cos(kyy) sin(k;z)) (10)
@, = c(sin(kyx) sin(kyy) cos(k.z))
kx,ky. k. € Z* U 0. Divergence free condition: aky + bky +ck; = 0.
All the above basis functions need to be normalized, which places
another constraint on the three constants. Assuming we are given

a fixed wave number ki, ky, k., we need to solve for a,b and c.
There are currently only two constraints, the normalization and
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divergence-free constraint. Another constraint needs to be added in
order to determine a, b and c. Functions of the same form as ours
are used to describe the electric field in a box cavity resonator, see
e.g. Cheng [1989]. In this case, a “direction of propagation” is chosen,
and then the functions to describe the electric field are derived. For
example, if the basis in equation 10 and the x axis is chosen as
the “direction of propagation”, then the constants become : a =
—(kg + kg), b = kxky,c = kxk;. The constants are then normalized.
We found that choosing the constants this way maximizes a under
both the divergence-free and normalization constraint. Thus, the
velocity along the direction x is maximized. One can also derive
the same formula by solving the constrained maximization problem
where a is maximized under the divergence-free and normalization
constraints.

When we determine the constants a, b, c, we take the scene into
consideration. For example, for a scene where the fluid flows pre-
dominantly along y direction (e.g. due to buoyancy), we choose the
constant by maximizing the velocity along the y direction. If there is
no prior knowledge about the direction of the fluid, we then choose
the constant by maximize a, b and c individually, and then use the
average value for each constant.

2 ENERGY CONSERVATION OF CHEBYSHEV
COLLOCATION METHODS

In spectral collocation (pseudospectral) methods, differentiation
matrices are used to compute the derivative of a given function on a
grid. For example, given a discretized function v(x;), i =0,1,..., N—
1, the discretized derivative of v can be written as v/ = Dv, where D
isan N X N matrix, and v/, v € RN, Generally, D is a dense matrix.
However, the matrix is usually never constructed explicitly, and a
transformation method is used to compute the derivative v’ given
v. For Fourier series and Chebyshev polynomials, the derivative can
be evaluated in N log(N) time complexity using the FFT.

When the N-S equation is discretized in space, it is desirable
for the spatially-discretized, time-continuous equation to conserve
some important properties of the N-S equations. It is advised in
[Canuto et al. 1988] that the convection form of N-S equation will
lead to instabilities at various Reynolds numbers, bcause the dis-
cretized convection form may not conserve momentum and energy.
Thus, the rotation form of the N-S equations should be used in-
stead. We can show that Chebyshev collocation does not conserve
energy under rotation form when the viscosity is zero. In contrast
to the Chebyshev differential matrix, the Fourier differential matrix
is skew-symmetric, thus its semi-discretized equation conserves
energy [Canuto et al. 2007]. However, the Fourier basis assumes
periodic boundary conditions.

The rotation form of the N-S equations is:

0
6—1;+w><u:—Vq+vV2u

V-u=0

(11)

where w = V x u and ¢ = p + 0.5/u|?. This form is equivalent to the
common convection form of the N-S equations.
First, let us denote spatially-discretized velocity as u'v. Define the

T
discrete gradient operator Gy g™V [Dx v DNqN D%,q ]

where D is the Chebyshev differentiation matrix with size N along

desired direction. And define the discrete divergence operator Dyu® =

N Yy N N . o :
DY uy + Dyuy + D% uz’. Omitting the viscosity, the space dis-
cretized inviscid N-S equation can be written as:

du N
+ X +G
S T xu +Gng” (12)
DNU =0

Taking the first equation of above and performing a dot product on
both sides using u® yields:

d 2
%+(WNXuN,uN)+(GNqN Ny=o. (13)
The product (wN xuN, uM) is zero since the cross product is orthog-

onal to uv N uN)y

. Thus, in order for energy to be conserved, (G Nq
must be equal to zero. In addition to this, since Dyu'¥
can construct the equation (¢V, Dau™N) = 0. Thus, assuming that

energy is conserved, the below two equations must hold:

= O, we

GngV,ul) = (D;‘VqN,uﬁcV )+ (DY,

(@~ ,DyuM) = gV

gV, up) + (D% ¢, ul) =0

.DYuy) + (¢, DYup)) + (V. D3 ul) =0
(14)

Writing the above two equations as matrix products yields:

) DY " + ())'DY ¢ + u}) DY q
(@) Dxuy + (@)D u +<qN>TDNuz = 0.

(15)

Taking the transpose of the first equation, and then adding the
second one, we get:

@) @F + O3 Huy +(¢™)T (DY, + (DY) uy +
(¢™M)T(DF, + F)Hul =0
For arbitrary u and g, the above equation only holds when Dy +
On)T =0 (skew-symmetric), or when Dy = (D N T (symmetric).

As shown in page 53 of [Trefethen 2000], the Chebyshev differenti-
ation matrix is:

(16)

2(N-1)%+1 ( 1)/ 1 N-1)]
A 25 FpvY
)™
D _ _l (_1)1 —X;j l (—l)NﬂH
N = 2 1-x; 2(l—xj2.) 2 1+x;
(_1)i+j
Xi—Xj :
~1(=n(N-D e _2(N-1)+1
L 2 1+x; 6
(17)

where i, j is integer index from 0 to N — 1, and x; = cos(%). It
is clear that this Chebyshev differentiation matrix is neither skew-
symmetric, nor symmetric. So the equation 16 does not hold. Thus,
(GNqN, uN) = 0 does not hold since DNuN = 0, and Chebyshev
collocation methods are not energy-conserving.
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