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Figure 1: (a) The original Bunny. (b) Julia set of the 331-root rational map found by our optimization. (c) Highly intricate
surface obtained by translating the roots by 1.41 in the z direction. Image is high-resolution; please zoom in to see details.

Abstract
We present the first 3D algorithm capable of answering the question: what would a Mandelbrot-like set in the
shape of a bunny look like? More concretely, can we find an iterated quaternion rational map whose potential
field contains an isocontour with a desired shape? We show that it is possible to answer this question by casting
it as a shape optimization that discovers novel, highly complex shapes. The problem can be written as an energy
minimization, the optimization can be made practical by using an efficient method for gradient evaluation, and
convergence can be accelerated by using a variety of multi-resolution strategies. The resulting shapes are not in-
variant under common operations such as translation, and instead undergo intricate, non-linear transformations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

The problem of robustly generating smooth geometry with
guaranteed properties has received much attention in com-
puter graphics. However, the related problem of automati-
cally creating rough, complex, but still highly structured ge-
ometries has recently received relatively less attention. The
most popular methods include Perlin Noise and its many

variants [LLC∗10], and similar methods such as hypertextur-
ing [EMP∗02]. These methods are widely employed to add
details once the overall geometry has been finalized, e.g. as
a shader on a pre-existing surface. They are used less during
the exploratory, conceptual stage of design, when the overall
form of the final geometry is still fluid. Iterated dynamical
maps such as those that generate the Mandelbrot set and the
closely related Julia sets [Man83] have the potential to assist
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at this exploratory stage, as they excel at producing highly
complex structures that it would have been difficult or im-
possible for a designer to conceptualize a priori, much less
prototype by hand. However, it has never been clear whether
it is possible to control these dynamical maps in a way that
produce anything other than the now-familiar Mandelbrot
“turtle” and Julia “dendrite” shapes.

In this paper, we show that such control is in fact pos-
sible. Fundamentally, we ask the question: What would a
Mandelbrot-like set in the shape of a bunny look like? We
present the first algorithm that is capable of answering this
question in 3D (Fig. 1). More specifically, we present an op-
timization method that finds an approximating quaternion
Julia set for a given shape. Our specific contributions follow.

• The polynomial Julia sets from previous works contain in-
sufficient degrees of freedom to fit a shape. We introduce
the needed degrees of freedom by using the Julia sets of
rational functions, containing hundreds of roots.
• We design an analytically differentiable energy function

that characterizes the fit of an iterated quaternion rational
map relative to an arbitrary shape.
• The energy function is extremely non-linear, so we pro-

pose a multi-level optimization method that uses both spa-
tial and variable coarsening to find minima.
• We present a monopole approximation method that yields

effective initial guesses for the optimization.
• A naïve implementation requires O(R2) time to compute

the gradient of R roots. We show that it is possible to com-
pute this quantity in O(R) time.

Our algorithm discovers highly complex shapes that would
have been difficult to conceptualize beforehand, and whose
character we have never seen before. Each output serves as
an initial point in a parameter space that can subsequently
be explored using simple operations such as translation. In
quaternion space, these simple operations instead induce in-
tricate and highly non-linear transformations (Fig. 1(c)).

In addition to their aesthetic possibilities, these shapes
have potential engineering applications. Currently, iterated
function systems (IFS) are used to generate shapes that max-
imize the surface area of heat exchangers [CC02] and radio
antennae [WG03]. Instead of limiting these designs to the
convex hull of the IFS [Vas13], Julia sets could be used to
generate shapes that fit any arbitrary form factor.

2. Related Work

Julia sets were initially investigated early on by Julia [Jul18]
and Fatou [Fat17], and gained wider attention when later
examined by Mandelbrot [Man80] and Douady and Hub-
bard [DH82]. Numerous works followed, and the texts by
Barnsley [Bar88] and Peitgen and Richter [PR86] are excel-
lent references on developments during the ensuing years.

In computer graphics, Julia sets were extended to 3D

in the pioneering work by Norton [Nor82], which took a
3D slice from a 4D quaternion function. Subsequently, ray-
tracing methods were developed to visualize these quater-
nion Julia sets [HSK89]. Interest has been sustained by hob-
byists, yielding recent variations such as the Mandelbulb
[Whi09], but graphics research on this topic has recently
been dormant. Fractal algorithms occasionally appear in ge-
ometry processing [Gol04, SLG05], but when the Mandel-
brot or Julia sets appear in graphics, it is usually in the form
of compute-intensive system tests [Cra05, SK10, PM12].

In contrast, theoretical work on Julia sets has remained
robust. Recent interesting results include locating Julia sets
that are not computable [BY07], the construction of the
Laplacian over Julia sets [FS12] and the construction of 2D
Julia sets that approximate an arbitrary shape [Lin14]. This
last work is closest to our own, and presents an analytical
method for placing rational roots in the complex plane so
that they approximate an arbitrary 2D shape. Unfortunately,
the analysis does not generalize directly to higher dimen-
sions [Lin13], which motivates our optimization approach.

Figure 2: Left: 3D rendering of Julia set with c =
[0.285 0.485 0 0]> Right: 2D slice from the same set. This
is a 2D example of a “filled” Julia set. The Julia set itself is
the boundary of the black region.

3. Julia Set Preliminaries

Notation: In this paper, we use the following notation.
Greek symbols, e.g. α, and unbolded, capitalized symbols
denote scalars, e.g. T . Unbolded, lowercase symbols are
used exclusively as counting indices, e.g. i, j, or n. Julia sets
and other sets will be denoted in blackboard bold, e.g. J.
Lowercase bold denotes a quaternion, e.g. q = A+Bi+C j+
Dk = [A B C D]>. The one exception is x, which denotes
a 3D Cartesian coordinate, x = [X Y Z]>. When we repre-
sent a Cartesian coordinate using a quaternion, we will de-
note it as qx. The first three coordinates of q are then set
to x, e.g. qx = [X Y Z 0]>, or equivalently, qx = [x 0]>.
This differs from the more conventional qx = [0 x]>, but
we have found this necessary, because relatively mundane
shapes are obtained if the real component is not varied.
Functions of a quaternion that yield another quaternion use

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



T. Kim / Quaternion Julia Set Shape Optimization

capital bold, e.g. P(q) = qq = q2. We define quaternion di-
vision as p

q = pq−1.

We can separate q into real and imaginary components,
q = [A v]>, where v = [B C D]>. The logarithm is then:

logq =

[
log‖q‖

v
‖v‖ cos−1

(
A
‖q‖

) ] ,

where ‖ · ‖ denotes magnitude. The exponential is:

eq = eA

[
cos‖v‖
v
‖v‖ sin‖v‖

]
.

A quaternion power then combines the two: qα = eα log q.

3.1. Computing a Julia Set

The simplest and most common expression for generating a
geometrically complex Julia set is the quadratic polynomial

P(q) = q2 + c, (1)

where c is a user-defined constant (Fig. 2). Each point in
space x ∈ R3 is mapped to a quaternion qx = [x 0]>, and
recursively evaluated:

P1(qx) = P(qx), P2(qx) = P(P(qx)) . . . (2)

We denote the nth recursion as Pn(qx). The filled Julia set J
is then the set of all x ∈ R3 where the magnitude of Pn(qx)
does not approach infinity as n→∞ (see e.g. [HSK89]):

J = {x : lim
n→∞

‖Pn(qx)‖9∞}. (3)

An approximation of J is computed by evaluating Pn(qx)
over a grid with a fixed (preferably large) n. Each ‖Pn(qx)‖
is checked against a radius r in lieu of∞. The code is simple
enough that it is often an introductory example for GPUs
[SK10]. Our goal is to find an expression whose J coincides
with the interior of a desired shape.

3.2. Factored Rationals

While Eqn. 1 generates interesting shapes, we are instead
interested in factored rationals of the form

R(q) = eC · (q− t1)T1(q− t2)T2 . . .(q− tt)Tt

(q−b1)B1(q−b2)B2 . . .(q−bb)Bb
(4)

where the set T = [t1 . . . tt ] are the roots of the top poly-
nomial, and the set B = [b1 . . .bb] are the roots of the bot-
tom polynomial. We denote the total number of roots as
R = |T|+ |B| and abbreviate Eqn. 4 to R(q) = eC T(q)

B(q) . The

eC moves the zero level set to different isosurfaces of the po-
tential function. R(q) has several properties that make it a
natural setting for shape optimization.

Property 1: If an iterate q is sufficiently close to a top
root ti, then it is inside the filled Julia set J. (Fig. 3)

Intuitively, each root of T(q) attracts the space around it

Figure 3: The J of a 4-root polynomial, with root locations
in blue. The rightmost root is dragged towards the center,
and the envelope of J clearly follows. (Property 1)

towards the interior of J. More concretely, if q = ti, it will
translate to the origin, force the magnitude of R(q) to zero,
and future iterations can never approach∞. Similarly, if q is
close to ti, it will translate close to the origin, and the mag-
nitude ‖(q− ti)Ti‖ will be small. If it is sufficiently small, it
will dominate the other R(q) terms and force the magnitude
to zero after several iterations.

This assumes that q = [0 0 0 0]> = 0 is an attracting fixed
point [Dev92] of the dynamical map. In general, this is not
guaranteed. Trivially, setting c = [1 0 0 0]> in Eqn. 1 re-
moves q = 0 as fixed point. However, the special factored
form we are interested in, R(q), effectively sets c = 0, and
guarantees the existence of the fixed point.

Figure 4: The J of a 5-root rational, with the roots in T in
blue and B in red. As the red root is dragged towards J, J
deforms to exclude it. (Property 2)

Property 2: If an iterate q is sufficiently close to a bottom
root bi, then it is outside of J. (Fig. 4)

Intuitively, the roots of B(q) repulse the interior of J.
Analogous to the previous property, if q = bi, it will trans-
late to the origin, divide by zero, and go instantly to∞. If q
is close to bi, it will translate to near the origin, the division
will turn its small magnitude into a large one, and if it is suf-
ficiently large, it will dominate R(q) and shoot it to∞ after
several iterations.

This assumes that q =∞ is an attracting fixed point of the
map, which again is not true in general. A trivial example is
the rationals that arise from the Newton-Raphson method,
e.g. N(q) = q− (q−t1)(q−t2)

(q−t1)+(q−t2)
, which due to the absence of

this fixed point, generate Julia sets with no bounded envelope
[Bar88]. However, for Eqn. 4, this fixed point is guaranteed.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



T. Kim / Quaternion Julia Set Shape Optimization

Figure 5: The multiplicity of the center root is increased
from one to three to seven. As its multiplicity grows, so does
its attractive influence. (Property 3)

Figure 6: Frog at 300 optimization iterations. On the left,
the broad shape is visible with n = 1. On the right, details
appear with n = 4, but the overall shape remains similar.

Property 3: The Ti term expands and contracts the attrac-
tive region of ti. The Bi does the same for repulsion with bi.
(Fig. 5)

A q that was insufficiently close to ti for its magni-
tude to dominate R(q) can be made dominant by a large
Ti. E.g. ‖(q− ti)‖ = 0.1 can be amplified to a dominant
‖(q− ti)8‖= 1e−8. The same property applies to Bi.

4. A Shape Optimization Method

Using these properties, we can fit a quaternion Julia set to
an arbitrary target shape. Our only assumption is that the
shape’s signed distance function (SDF), φ(x), is available.

4.1. The Energy Function

We have observed the following regarding R(q):

• A single recursion of R(q), i.e. R1(q), is already a use-
ful approximation of J (Fig. 6). This was not true for
Eqn. 1 because of its relatively low quadratic degree: a
single recursion yielded a sphere, and more recursions
were needed before the overall shape emerged.
• The sign of the potential, L = log(‖R(q)‖) can be used to

partition R(q) into inside and outside components.

Using these, we propose the following energy,

ψ(R,φ) =
1
η

Z
x∈R3
− tanh(α log(‖R(qx)‖)) W (φ,x) dx.

(5)

Figure 7: Left: Slice through the SDF of the Tooth (Fig.9).
Inside is blue, outside is red, and brightness denotes the ab-
solute distance. Right: Inverse SDF of the same slice, Eqn. 6.
The weight concentrates on the shape boundary, which is
then given more importance by ψ.

The tanh maps the potential function to the [1,−1] range,
and α defines how sharply it approximates a step function.
The W (φ,x) term is an arbitrary weight function that we de-
fine as the inverse of the SDF,

W (φ,x) = φ(x)−1. (6)

The − tanh maps the inside of J to 1 and the outside to −1.
This is the opposite sign convention as the SDF, so when the
two shapes match, they produce a large, negative energy. We
normalize the energy using

η =
Z

x∈R3
|W (φ,x)| dx. (7)

When J and the target shape match exactly (up to the grid
resolution of φ), the η

−1 term forces ψ to −1. If they mis-
match exactly, ψ then yields 1. By construction, the energy
cannot take on a value outside this range.

We use φ(x)−1 in lieu of φ(x) because we found that
φ(x) erroneously encourages the optimization to match the
shape’s medial axis, and the border of the φ grid. Fig. 7 dis-
cusses this further. Many energies often square the integrand;
we preferred not to do this because it worsened the condi-
tioning of an already challenging optimization.

4.2. The Optimization Variables

With the energy function defined (Eqns. 5-7), we now select
optimization variables. The C term from §3 is a very effec-
tive, as it allows any isosurface of R(q) to be selected.

The roots of Eqn. 4, [t1 . . . tt ] and [b1 . . .bb], also appear
to be promising candidates for optimization. However, our
experiments indicated that this is not the case. In the 2D
case [Lin14], the optimal roots were found to lie along the
surface of the target curve. The same is likely true in the 3D
case, but without a constraint mechanism pinning the roots
to the shape surface, the optimizer consistently performs lo-
cally optimal but globally counter-productive steps such as

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



T. Kim / Quaternion Julia Set Shape Optimization

pushing roots outside the bounds of the SDF grid or setting
exponents to zero.

Instead of adding complex surface constraints to the opti-
mization, we found it effective to front-load the difficulty of
root placement to the initial guess (§4.4), and instead op-
timize the exponents [T1 . . .Tt ] and [B1 . . .Bb] in line with
Property 3 from §3.2. In addition, we found it very effec-
tive to add two global parameters, τ and β, that allow the
optimizer to tune all the exponents of T and B in tandem:

T(q) =
|T|

∏
i=1

(q− ti)
τTi B(q) =

|B|

∏
i=1

(q−bi)
βBi . (8)

There are now R + 3 variables to optimize: the global vari-
ables [C τ β] and the root exponents, [T1 . . .Tt ] and [B1 . . .Bb].

4.3. Building the Energy Gradient

We must now compute the energy gradient for a single cell,
ψ = ψ(R,φ,x). The full gradient is then a summation over
all cells. The derivation is straightforward but tedious, so we
describe it in Appendix A.

Fast Gradient Evaluation: The gradient contains terms
that take O(R2) to evaluate, such as:

∂T(q)
∂τ

=
|T|

∑
i=1

[
i−1

∏
j=1

tτTj
j Ti log ti

|T|

∏
j=i

tτTj
j

]
.

However, these terms are highly redundant, so caching can
reduce their evaluation to O(R). For the top polynomial, we
compute forward (fi) and reverse (ri) caches in O(R) time,

fi =
i

∏
j=1

tτTj ri =
|T|

∏
j=i

tτTj , (9)

Using these, the product sequence evaluates in O(R) time:

∂T(q)
∂τ

=
|T|

∑
i=1

fi τ log ti ri+1. (10)

These caches can be computed once per cell and then used
for all the gradient terms. The τ and β gradient terms com-
pute in O(R), and the Ti and Bi terms compute in O(1). Thus,
these caches allow a cell’s gradient to compute in O(R) time.

Similar techniques can be used to accelerate Hessian com-
putation, as the only new feature that appears is another
log term. However, runs using the Hessian never converged
faster than BFGS, and even with caching, take O(R2) to eval-
uate. Thus, we preferred the faster, gradient-only BFGS.

4.4. Computing an Initial Guess

Non-linear optimizers generally require a good initial guess
[NW06], which for our problem means initial values for
roots positions ti and bi. Simple strategies were attempted,
such as random placement in space, along the shape interior,

and along the shape surface. Noise distributions guided by
surface quantities such as curvature were also tried. In all
cases, the results were unacceptable, and made it clear that a
tailored solution was needed.

There is no known analytical method for optimal 3D root
placement, but we leverage the intuition from 2D. The op-
timal 2D roots lie along the target curve [Lin14], and there
is some evidence that these roots distribute according to the
electrostatic potential of that curve [BDM13]. Extrapolating
that these hold in 3D, we devised the following strategy.

Computing a Set of Monopoles: We use a monopole ap-
proximation to a shape’s electrostatic potential as an initial
guess. Similar methods previously have been used in graph-
ics for acoustic simulations [JBP06]. Given the surface, Γ,
of a target shape, we solve for the electrostatic potential p:

∇2P = 0 (11)

P = 1 along Γ (12)

P = 0 at∞ (Sommerfeld condition). (13)

Many excellent Boundary Element Method (BEM) libraries
exist to solve this exterior radiation problem [SAB∗14].
Note that this electrostatic potential P is distinct from the
“potential” L in §4.1. Once P has been computed, we ap-
proximate it using a set of monopoles. Following the strat-
egy of James et al. [JBP06] we define an offset surface Γ+
as an isosurface displaced by a constant from the zero level
set. We then locate monopoles mi and weights wi along Γ

that approximate P along Γ+:

P(x)≈
|M|

∑
i=1

wi

‖x−mi‖
∀x ∈ Γ+. (14)

We use a greedy algorithm analogous to “’cubature fit-
ting” [AKJ08] and “orthogonal matching pursuit” [TG07]
to find these monopoles and weights. We want to find |M|
monopoles that approximate the values of P(x) at N points
along Γ+. We stack these N samples of P into a vector:

p = [P(x1) P(x2) P(x3) . . . P(xN)]> ∈ RN . (15)

For a single location mi, we can evaluate P at the N locations
to form a “candidate” vector:

c(mi) =
[

1
‖x1−mi‖

1
‖x2−mi‖

. . .
1

‖xN −mi‖

]>
∈RN .

(16)
With |M| candidates, the vectors form a least squares prob-
lem:

[c(m1) . . . c(m|M|)][w1 . . . wR]> = p (17)

We abbreviate this to Cw = p. While the residual r = Cw−p
has a magnitude that exceeds a user-defined threshold ε,
monopoles are added to the approximation and additional
least squares problems are solved. Monopoles are added
greedily. We generate blue noise candidates along the target
surface and compute their columns (Eqn. 16). The candidate
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with the largest absolute projection onto the residual is added
to the approximation. The process is outlined in Alg. 1.

Algorithm 1: computeMonopoleApproximation(ε)
Data: ε = desired monopole accuracy.
begin1

r = p2

The initial set of monopoles M = ∅3

while ||r||2 > ε do4

C = 100 random monopole candidates5

mnew = argmaxmi∈C |c(mi) · r|6

Add mnew to M7

Build Cw = p from M8

Solve for least-squares weights w, update9

r = p−Cw
return M10

end11

Building the initial guess: In order to convert the
monopole approximation into an initial guess, we use Prop-
erties 1 and 2 from §3.2. The locations of the positive and
negative poles found by the fit have straightforward interpre-
tations as roots of R. The repulsive roots in B “hollow out”
the concave regions of the target shape, so the monopoles mi
with negatives weights Wi become the roots in B. The corre-
sponding Bi are set to |Wi|. The attractive roots of T pull J
towards thin, convex features, so the monopoles with posi-
tive weights become the roots in T, and the weights becomes
the initial values of Ti. This intuition is validated when the
roots are visualized (Fig. 8).

4.5. Optimization Strategies

With an energy, its gradient, and an initial guess strategy de-
fined, we can now run an optimization. We tested a variety

Figure 8: Roots found by Alg. 1. Surface potential is shown
in grayscale, positive roots are blue and negative roots are
red. Negative roots tend towards dark, concave regions,
while positive roots appear in lighter, convex regions.

of optimizers, and found that the limited-memory, variable-
metric solver in TAO [MSW∗12] yielded the best conver-
gence. As negative values would erroneously flip roots to
the other side of the rational, we added non-negativity con-
straints to τ,β, [T1 . . . TT ]> and [B1 . . . BB]>.

Computing the energy function: Evaluating the energy
function ψ and its derivatives is the most time-consuming
part of the optimization. From §4.3, ψ(R,φ,q) is the energy
at a single spatial point. Discretizing Eqn. 5 iterates over all
N3 grid cells in the SDF,

ψ(R,φ) =
N

∑
X=1

N

∑
Y=1

N

∑
Z=1

ψ(R,φ, [x(X ,Y,Z) 0]>), (18)

where x(X ,Y,Z) is the cell center at grid index (X ,Y,Z).
Evaluating the energy and derivatives for a grid cell takes
O(R) time, so a single optimization iteration takes O(RN3).
In general, R≈ 300 while N3 ≈ 1003, so N is the clear lim-
iter. We will describe several strategies for addressing this
complexity, and then combine into a unified solve.

Geometric Coarsening: In the spirit of geometric multi-
grid methods [BHM00], one natural strategy is to compute
the optimization over a hierarchy of coarsened SDFs. None
of the terms in our energy function depend on a specific
grid spacing, so implementation is straightforward. The nor-
malization constant, Eqn. 7, needs to be recomputed at each
level, but this computation is negligible.

Variable Coarsening: Another common strategy is to
construct a coarse representation that is tailored to the spe-
cific problem, and perform alternating coarse- and fine-scale
optimizations on two discrete levels. We introduced the τ

and β variables in §4.2 to enable this strategy. The variable-
coarsened optimization then takes place over the three global
variables C,τ and β instead of all R + 3 variables This strat-
egy is complementary to geometric coarsening, as the ∂ψ

∂τ

and ∂ψ

∂β
terms still require O(RN3) time to compute, so coars-

ening the SDF accelerates their update as well.

Reweighting W (φ,q): While the two strategies described
above make useful optimization progress, we encountered
situations where the filled Julia set J poorly approximated
specific geometric features of the target shape. We encour-
aged the optimization to expend more effort matching spe-
cific geometric features by reweighting the W (φ,q) term in
the energy function.

We computed the φJ of the current fractal using the fast
sweeping method [Zha05], whose running time was negli-
gible compared to the rest of the optimization. Cells that
were on the interior of both φ and φJ were tagged as “well-
captured”, while those inside φ but outside of φJ were tagged
as “poorly-captured”. The values of W (φ,q) were scaled so
the sum of the energies in the well- and poorly- captured re-
gions were equal. This encouraged the optimizer to expend
50% of its effort “filling in” poorly fit regions.

c© 2015 The Author(s)
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(a) (b) (c)

Figure 9: (a) The original Tooth. (b) Julia set of the 108-root rational found by our algorithm. (c) Highly intricate surface
obtained by translating the roots by 0.54 in the z direction. Image is very high-resolution; please zoom in to see details.

Optimization Schedule: It is unclear what order to apply
the strategies in, i.e. what their schedule should be. We found
that some minor experimenting was needed to find the best
schedule for a shape. This to roughly analogous to choosing
between V, W and Full cycles in multigrid.

We will list the optimization schedule for each ex-
ample as follows. A Full pass involving all R + 3
variables will be denoted 100(F), where the 100 in-
dicates a 1003 SDF. A Variable-coarsened pass is de-
noted 100(V), and a Reweighted pass 100(R). Strategies
are applied sequentially, so letters can be concatenated.
E.g. 25(VFR) 50(VFR), indicates that a variable-coarsened,
full, and reweighted pass took place at 253, and then again
at 503. The schedules for each example are listed in §5.1.

5. Results and Discussion

All computations were run on a 12-core, 2.66 Ghz Mac Pro,
and OpenMP was used extensively. As described in §4.5,
TAO 2.1 [MSW∗12] was used as the optimizer.

Triangles were obtained by using Marching Cubes on the
log(‖Rn(q)‖) field, with a bisection search performed at
each edge. The geometry was rendered in Mitsuba [Jak10].
Rendering methods that rely on a “distance estimators”
[HSK89] were unfortunately not directly applicable, because
they were formulated for quadratic polynomials, not the ar-
bitrary rationals we use here. Even in the quadratic case,
these estimators can yield inferior values if the ray origin is

not already close to the surface (§3.4 of Hart et al. [HSK89]).
Developing better estimators for arbitrary rationals remains
a direction for future work.

Shape Transformation Parameters: For each computed
Julia set, we found that a variety of operations produce dra-
matic, non-linear transformations.

• The shape is not translation invariant. The shape disinte-
grates as distance from the origin increases.

• The shape is not linear under scaling. Scaling the roots by
more than one tears the shape apart, while scaling by less
than one forces the shape into a sphere.

• Increasing the slice parameter S, i.e. qx = [x S]>, causes
the shape to gradually disintegrate.

5.1. Algorithm Performance

Monopole Performance: In order to encourage the opti-
mization to focus on broad features, we smoothed each
shape using Poisson surface reconstruction [KBH06]. This
also yielded more regularly shaped elements for the BEM
solve. Algorithm 1 was always run with ε = 4%, and as seen
in Table 1, the running time of this stage never exceeded 5%
of the total time.

Optimization Performance: For each shape, we ran the
following optimization schedules:

• Tooth (Fig. 9): 25(VFRF) 50(VFRF) 97(VFR)
• Bunny (Fig. 1): 25(VFRF) 50(VFRF) 97(VF)

c© 2015 The Author(s)
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Example |T| |B| R BEM solve Monopole Optimization Iterations Total Time
Tooth 65 43 108 00:45:35 (3%) 00:00:22 (< 1%) 22:44:11 (96%) 7312 23:30:08
Bunny 178 153 331 01:47:08 (4%) 00:04:29 (< 1%) 42:59:10 (96%) 8224 44:50:47
Frog 194 170 364 00:28:25 (41%) 00:05:05 (7%) 00:35:27 (51%) 1379 01:08:57
Armadillo 268 278 546 00:42:05 (15%) 00:07:13 (2%) 03:44:10 (82%) 2675 04:33:28
Dragon 352 356 708 01:15:19 (35%) 00:11:18 (5%) 02:10:59 (60%) 3014 03:37:36

Table 1: Example running times and complexities, in increasing order. All timings are in hours:minutes:seconds. In all cases,
the monopole approximation was computed with ε = 4% in Algorithm 1. The Tooth and Bunny examples were allowed to run
for a long time, but the overall shape is captured early on. The Armadillo and Dragon optimizations did not run as long because
they both terminated early due to insufficient exponent bits.

• Frog (Fig. 10): 25(VFR) 50(VFR) 97(V)
• Armadillo (see supplement): 25(VFR) 50(V)
• Dragon (see supplement): 25(VFRF) 50(V)

Detailed statistics for each example are listed in Table 1.
All computations were run in 80-bit extended precision, and
when R ' 350, they began to run out of bits in the expo-
nent. For all of the optimizations, the overall shape was cap-
tured early on, so a recognizable result was obtained if the
exponent precision was exceeded. The fitting error per it-
eration is plotted in Fig. 11. Schedule transitions are vis-
ible as the jumps in the plots. The most important find-
ing was that the V stage should be run first. Most of the
rapid convergence regions correspond to this stage. In many
cases, e.g. around step 6000 for the Bunny example, switch-
ing strategies clearly defeated a local minimum. In others,
e.g. between steps 2000 and 4000 in the Tooth example,
switching strategies only resulted in a temporary detour.

5.2. Limitations and Future Work

Limitations: Our main limitation is that 80-bit precision is
needed to resolve the large rational division. Even then, the
optimization can run out exponent bits. While this is the
first work that can find a Mandelbrot-like set shaped like a
bunny, further work is needed to make it more robust. Many
promising avenues exist in this respect, such as rationals in
Lagrange form,

R(q) = eC · (q− t1)T1

(q−b1)B1

(q− t2)T2

(q−b2)B2
. . . , (19)

but investigating these possibilities and their effects on the
optimization is beyond our scope.

Our energy function uses an Eulerian SDF, so it pre-
dictably has trouble capturing thin features. Many of the
stages of in the optimization schedule could clearly have
been terminated earlier, e.g. iterations 400 to 7000 for the
Tooth did not improve the shape dramatically. Each stage
was run until the gradient vanished or the line search failed.
Other termination criteria were also attempted, but no reli-
able results were obtained. More robust criteria could reduce
the number of unnecessary iterations.

Future Work: Many design choices were made at each

stage of the algorithm, and while they were the ones we
found to be most effective, more efficient alternatives are
likely to exist. More easily optimized energies, other initial
guess strategies, direct analytic methods, and faster render-
ing methods are all directions for future work.

Some of the shapes exhibit divots at root locations, and
these features would reduce if more roots were introduced.
Increasing the number of roots increases the precision is-
sues, so finding a rational representation with better condi-
tioning would again be a significant step. Finally, we have
only scratched the surface regarding parameters that can be
used to manipulate these shapes.
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Appendix A: The Energy Gradient

When we have obtained ∂ψ

∂c , ∂ψ

∂τ
, ∂ψ

∂β
, ∂ψ

∂Ti
and ∂ψ

∂Bi
, we are

done. For parsimony, we will assume q = qx in what follows.
We start by isolating the log term and its derivative:

L = log(‖R(q)‖) (20)
∂ψ

∂L
= α ·W (φ,q) · sech2(α ·L). (21)

We use this term in all of the following expressions. Since
∂L
∂C = 1, the chain rule yields our first expression:

∂ψ

∂C
=

∂ψ

∂L
· ∂L

∂C
=

∂ψ

∂L
. (22)
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(a) (b) (c)

Figure 10: (a) The original Frog. (b) Julia set of the 364-root rational found by our algorithm. (c) Highly intricate surface
obtained by translating the roots by 1.07 in the z direction. Image is very high-resolution; please zoom in to see details.
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Figure 11: Fitting energy ψ(R,φ), per iteration. The values have been normalized from [−1,1] to [0,1] to enable a log scale.
The absolute error, is computed over all grid cells in φ, using the weight function from Eqn. 6. The relative error is the myopic
energy that the optimizer uses directly, where φ may have been coarsened or reweighted. The jumps in energy correspond to
switches between stages in the optimization schedule.

The derivatives with respect to Ti then take the form:

∂ψ

∂Ti
=

∂ψ

∂L
·

(
R(q) · eC

∂T(q)
∂Ti

B(q)

)
R(q) ·R(q)

∂T(q)
∂Ti

=
i−1

∏
j=1

tτTj
j τ log ti

|T|

∏
j=i

tτTj
j .

(23)

The derivatives with respect to Bi are slightly more subtle:

∂ψ

∂Bi
=

∂ψ

∂L
·

(
R(q) ·

(
−I eC T(q)

DB(q)

))
R(q) ·R(q)

DB(q) =
i−1

∏
j=1

bβB j
j (β logbi)

−1
|B|

∏
j=i

bβB j
j ,

(24)

where −I = [−1 0 0 0]>. The DB(q) is almost identical to
∂T(q)

∂Ti
save for the log inverse. Usually this term would flip

to the numerator, but multiplication order must be preserved
for quaternions, so we keep it in the denominator.

For the coarse level variable τ, a sum of products appears,

∂ψ

∂τ
=

∂ψ

∂L
·

(
R(q) · eC

∂T(q)
∂τ

B(q)

)
R(q) ·R(q)

∂T(q)
∂τ

=
|T|

∑
i=1

[
i−1

∏
j=1

tτTj
j Ti log ti

|T|

∏
j=i

tτTj
j

]
.

(25)

and an analogous sum appears for β,

∂ψ

∂β
=

∂ψ

∂L
·

(
R(q) ·

(
−I eC T(q)

DBβ(q)

))
R(q) ·R(q)

DBβ(q) =
|B|

∑
i=1

[
i−1

∏
j=1

bβB j
j (Bi logbi)

−1
|B|

∏
j=i

bβB j
j

]
.

(26)

Care must be taken with ∂ψ

∂Bi
and ∂ψ

∂β
to avoid dividing by

zero. If β or Bi equals zero, the inverse generates a NaN.
If we instead think of T(q)

DB(q) as T(q)DB(q)−1, the ordering
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reverses, and the inverse is pushed to the exponents:

DB(q)−1 =
i

∏
j=|B|

b−βB j
j β logbi

1

∏
j=i−1

b−βB j
j . (27)

The β now has no inverse, so when β = 0, it is clear that the
product sequence should merely evaluate to zero.
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