
Supplement to Lifted Curls: A Model for Tightly Coiled Hair
Simulation

Alvin Shi∗
alvin.shi@yale.edu
Yale University

New Haven, CT, USA

Haomiao Wu∗
haomiao.wu@yale.edu

Yale University
New Haven, CT, USA

Jarred Parr
jarred.parr@yale.edu

Yale University
New Haven, CT, USA

A.M. Darke
darke@ucsc.edu
UC Santa Cruz

Santa Cruz, CA, USA

Theodore Kim
theodore.kim@yale.edu

Yale University
USA

1 RANK-ONE UPDATE OF 𝜕2𝜃
𝜕T2

Wewill apply the Bunch-Nielsen-Sorensen (BNS) algorithm [Bunch
et al. 1978] to the analytic eigensystem of 𝜕2𝜃

𝜕T2 in order to obtain
the analytic eigensystem of:

𝜕2Ψ𝑏
𝜕T2

=
𝜕2Ψ𝑏
𝜕𝜃2

𝜕𝜃

𝜕T
𝜕𝜃

𝜕T

⊤
+ 𝜕Ψ𝑏

𝜕𝜃

𝜕2𝜃

𝜕T2
. (1)

The analytic eigensystem of 𝜕2𝜃
𝜕T2 is already known:

𝜆𝜃0 =
cos𝜃 − 1

∥b∥ q𝜃0 =
1

√
2∥b∥

[
b
b

]
(2)

𝜆𝜃1 =
cos𝜃 + 1

∥b∥ q𝜃1 =
1

√
2∥b∥

[
b
−b

]
(3)

𝜆𝜃2 = −1 q𝜃2 =
1
√
2

[
t0 + b0
03

]
(4)

𝜆𝜃3 = 1 q𝜃3 =
1
√
2

[
t0 − b0
03

]
(5)

𝜆𝜃4 = −1 q𝜃4 =
1
√
2

[
03

t1 + b1

]
(6)

𝜆𝜃5 = 1 q𝜃5 =
1
√
2

[
03

t1 − b1

]
(7)

To review from the main document, we are examining three vertices
that form a triangle, x0,1,2, denote the two strand edges as e0 =

x0−x1, e1 = x2−x1, and normalized versions of these edges are the
tangents t0 = e0

∥e0 ∥ and t1 = e1
∥e1 ∥ . The angle between the two edges

is 𝜃 = acos
(
t⊤0 t1

)
. The binormal and its surrounding quantities are

denoted b = t0 × t1, b0 = t0 × b
∥b∥ and b1 = t1 × b

∥b∥ .

We will now determine how the addition of the 𝜕𝜃
𝜕T update vector

shifts these expressions. The stages of the BNS are as follows:

• Build a normalized version of the update vector, �̂�𝜃
𝜕T

• Project �̂�𝜃
𝜕T onto the existing eigenvectors, q𝜃0...5.

• Form the secular equation and solve for its roots to determine
the new eigenvalues.

∗Joint first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

• Use the new eigenvalues to solve for the new eigenvectors.
Traditionally, these stages are all performed numerically, but we
will see that the specific system we are examining contains enough
structure that the algorithm can be applied analytically.

We will first solve for the simpler rank-one updated eigensystem

A =
𝜕𝜃

𝜕T
𝜕𝜃

𝜕T

⊤
+ 𝜕2𝜃

𝜕T2
. (8)

Once this eigensystem is known, re-introducing the 𝜕2Ψ𝑏
𝜕𝜃 2 and 𝜕Ψ𝑏

𝜕𝜃
scalars is straightforward.

1.1 Normalizing the Update Vector
The update vector is:

𝜕𝜃

𝜕T
=

−1
sin𝜃

 t1 − t0 cos𝜃 t0 − t1 cos𝜃
 . (9)

Each column already has unit magnitude, e.g. the first column
reduces as follows:

1
sin2 𝜃

(t1 − t0 cos𝜃)⊤ (t1 − t0 cos𝜃) =

1
sin2 𝜃

(
t⊤1 t1 − t⊤0 t1 cos𝜃 − t⊤1 t0 cos𝜃 + t⊤0 t0 cos

2 𝜃
)
=

1
sin2 𝜃

(
1 − 2 cos2 𝜃 + cos2 𝜃

)
=

sin2 𝜃
sin2 𝜃

= 1.

The normalized update vector is then straightforward:

�̂�𝜃

𝜕T
=

−1
√
2 sin𝜃

 t1 − t0 cos𝜃 t0 − t1 cos𝜃
 . (10)

1.2 Projection Onto q𝜃0...5
The update vector �̂�𝜃

𝜕T is orthogonal to q𝜃0 and q𝜃1 . Both eigenvectors
are constructed entirely from b = t0 × t1, which is by definition
orthogonal to t0 and t1. However, �̂�𝜃𝜕T is composed entirely of linear
combinations of t0 and t1, so it will have zero projections onto b,
and therefore q𝜃0 and q𝜃1 .

We next flatten �̂�𝜃
𝜕T into a vector, vec

(
�̂�𝜃
𝜕T

)
= �̂�𝜃

𝜕t , and perform a

projection onto q𝜃2 :(
q𝜃2

)⊤ �̂�𝜃

𝜕t
=

−1
√
22 sin𝜃

[
t0 + t0 × b

03

]⊤ [
t1 − t0 cos𝜃
t0 − t1 cos𝜃

]
=

−1
2 sin𝜃

(
t⊤0 t1 + (t0 × b)⊤t1 − t⊤0 t0 cos𝜃 − (t0 × b)⊤t0 cos𝜃

)
=

−1
2 sin𝜃

(
cos𝜃 − sin2 𝜃 − cos𝜃

)

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Alvin Shi, Haomiao Wu, Jarred Parr, A.M. Darke, and Theodore Kim

= − sin𝜃
2

where we used the identities (t0×b)⊤t1 = − sin2 𝜃 and (t0×b)⊤t0 =
0. The rest of the projections follow analogously:(

q𝜃3
)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

(11)(
q𝜃4

)⊤ �̂�𝜃

𝜕t
= − sin𝜃

2
(12)(

q𝜃5
)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

(13)

1.3 Building the Secular Equation
We can now use the projections to build the secular equation and
solve for the updated eigenvalues:

1 +
 𝜕𝜃𝜕T 2 5∑︁

𝑖=0

©«
((
q𝜃3

)⊤
�̂�𝜃
𝜕t

)2
𝜆𝑖 − 𝜆

ª®®®®¬
= 0 (14)

As the projection onto the first two eigenvectors was zero, the
summation is effectively over 𝑖 = 2 . . . 5. Keeping in mind that the
other eigenvalues were

𝜆𝜃2 = −1 𝜆𝜃3 = 1 𝜆𝜃4 = −1 𝜆𝜃5 = 1, (15)

the secular equation becomes

1 +
 𝜕𝜃𝜕T 2 (sin2 𝜃

4(−1 − 𝜆) +
sin2 𝜃

4 (1 − 𝜆) +
sin2 𝜃

4(−1 − 𝜆) +
sin2 𝜃

4 (1 − 𝜆)

)
=

1 + sin2 𝜃
 𝜕𝜃𝜕T 2 (1

2 (1 − 𝜆) −
1

2(1 + 𝜆)

)
= 0

We have now reduced what first appeared to be a 6th order polyno-
mial to a quadratic whose roots can be written in closed form:

𝜆new =
1
2

(
𝛼 ±

√︁
𝛼2 + 4

)
𝛼 = sin2 𝜃

 𝜕𝜃𝜕T 2 = 2 sin2 𝜃 .

In the end, only two eigenvalues are shifted by the rank-one update.

1.4 Updating the Eigenvectors
The updated eigenvectors can now be obtained using

qnew = Q𝜃 (Λ − 𝜆new)−1
(
Q𝜃

)⊤ 𝜕𝜃

𝜕T
(16)

where Q𝜃 denotes the matrix of eigenvectors q𝜃0...5. We already
computed the rightmost product in §1.2:(

q𝜃0
)⊤ �̂�𝜃

𝜕t
= 0

(
q𝜃1

)⊤ �̂�𝜃

𝜕t
= 0

(
q𝜃2

)⊤ �̂�𝜃

𝜕t
= − sin𝜃

2(
q𝜃3

)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

(
q𝜃4

)⊤ �̂�𝜃

𝜕t
= − sin𝜃

2

(
q𝜃5

)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

so we can then build:

(
Q𝜃

)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

0
0
−1
1
−1
1

(17)

and

(Λ − 𝜆new)−1 =

0
0

−1
1+𝜆new 1

1−𝜆new −1
1+𝜆new 1

1−𝜆new

(18)

where zeros appear if the eigenvalues did not participate in the
secular equation. We then arrive at

(Λ − 𝜆new)−1
(
Q𝜃

)⊤ �̂�𝜃

𝜕t
=

sin𝜃
2

0
0
1

1+𝜆new1
1−𝜆new1
1+𝜆new1
1−𝜆new

(19)

Left multiplying by Q𝜃 gives us the new eigenvectors:

qnew =
1

1 + 𝜆new

(
q𝜃2 + q𝜃4

)
+ 1
1 − 𝜆new

(
q𝜃3 + q𝜃5

)
(20)

We drop the sin𝜃
2 factor since it disappears after normalization. We

can further simplify by multiplying through by (1+𝜆new) (1−𝜆new):

qnew = (1 − 𝜆new)
(
q𝜃2 + q𝜃4

)
+ (1 + 𝜆new)

(
q𝜃3 + q𝜃5

)
(21)

Plugging in the expressions from q𝜃
𝑖
yields the final expression:

qnew =

[
t0 − 𝜆newb0
t1 + 𝜆newb1

]
(22)

More concretely, if we assign the new eigenpairs the indices 2 and
3, they take the form:

𝜆2 =
1
2

(
𝛼 +

√︁
𝛼2 + 4

)
q2 =

[
t0 − 𝜆2b0
t1 + 𝜆2b1

]
(23)

𝜆3 =
1
2

(
𝛼 −

√︁
𝛼2 + 4

)
q3 =

[
t0 − 𝜆3b0
t1 + 𝜆3b1

]
(24)

The last two updated eigenpairs then span the remaining subspace:

𝜆4 = 1 q4 =
1
2

(
q𝜃2 − q𝜃4

)
(25)

𝜆5 = −1 q5 =
1
2

(
q𝜃3 − q𝜃5

)
(26)

Plugging in the q𝜃
𝑖
expressions then yields:

𝜆4 = 1 q4 =
[
t0 − b0
−t1 + b1

]
(27)

𝜆5 = −1 q5 =
[
t0 + b0
−t1 − b1

]
(28)

Supplement to Lifted Curls: A Model for Tightly Coiled Hair Simulation Conference’17, July 2017, Washington, DC, USA

Bringing everything together, the simplified system

A =
𝜕𝜃

𝜕T
𝜕𝜃

𝜕T

⊤
+ 𝜕2𝜃

𝜕T2
. (29)

has the analytic eigendecomposition

𝜆0 = 𝜆𝜃0 q0 = q𝜃0 (30)

𝜆1 = 𝜆𝜃1 q1 = q𝜃1 (31)

𝜆2 = sin2 𝜃 +
√︁
sin4 𝜃 + 1 q2 =

[
t0 − 𝜆2b0
t1 + 𝜆2b1

]
(32)

𝜆3 = sin2 𝜃 −
√︁
sin4 𝜃 + 1 q3 =

[
t0 − 𝜆3b0
t1 + 𝜆3b1

]
(33)

𝜆4 = 1 q4 =
[
t0 + b0
−t1 + b1

]
(34)

𝜆5 = −1 q5 =
[
t0 − b0
−t1 − b1

]
, (35)

where the first two eigenpairs remained unchanged from 𝜕2𝜃
𝜕T2 .

1.5 The Full Rank-One Updated System
We now return to the full rank-one updated system

𝜕2Ψ𝑏
𝜕T2

=
𝜕2Ψ𝑏
𝜕𝜃2

𝜕𝜃

𝜕T
𝜕𝜃

𝜕T

⊤
+ 𝜕Ψ𝑏

𝜕𝜃

𝜕2𝜃

𝜕T2
. (36)

The eigenvalues of the blue term are now shifted from ±1 to ± 𝜕Ψ𝑏
𝜕𝜃

,
and the coefficient of the red term must be taken into account, so
the magnitude of the rank-one update becomes

√︃
𝜕2Ψ𝑏
𝜕𝜃 2

 𝜕𝜃𝜕T .
These new scalars does not change the overall analysis, because

the two key components remain the same: the projections onto q𝜃0
and q𝜃1 remain zero, and the repeated (albeit scaled) eigenvalues
reduce the 6th order secular to a quadratic. Following the same
steps as before yields a system where various terms have been
scaled by 𝜕2Ψ𝑏

𝜕𝜃 2 and 𝜕Ψ𝑏
𝜕𝜃

, but the overall form remains the same.
The complete eigensystem is:

𝜆0 =
𝜕Ψ𝑏
𝜕𝜃

𝜆𝜃0 q0 = q𝜃0 (37)

𝜆1 =
𝜕Ψ𝑏
𝜕𝜃

𝜆𝜃1 q1 = q𝜃1 (38)

𝜆2 =
𝜕2Ψ𝑏
𝜕𝜃2

+

√︄
𝜕2Ψ𝑏
𝜕𝜃2

2
+ 𝜕Ψ𝑏

𝜕𝜃

2
q2 =

[
𝜕Ψ𝑏
𝜕𝜃

t0 − 𝜆2b0
𝜕Ψ𝑏
𝜕𝜃

t1 + 𝜆2b1

]
(39)

𝜆3 =
𝜕2Ψ𝑏
𝜕𝜃2

−

√︄
𝜕2Ψ𝑏
𝜕𝜃2

2
+ 𝜕Ψ𝑏

𝜕𝜃

2
q3 =

[
𝜕Ψ𝑏
𝜕𝜃

t0 − 𝜆3b0
𝜕Ψ𝑏
𝜕𝜃

t1 + 𝜆3b1

]
(40)

𝜆4 =
𝜕Ψ𝑏
𝜕𝜃

q4 =
[
t0 + b0
−t1 + b1

]
(41)

𝜆5 = − 𝜕Ψ𝑏
𝜕𝜃

q5 =
[
t0 − b0
−t1 − b1

]
. (42)

This concludes the bending energy analysis.

2 MATLAB IMPLEMENTATION AND
VERIFICATION

Given the complexity of the prior derivations, it is natural to ask:
how do we know they are correct? To provide further evidence of

eigensystem correctness, we have provided Matlab/Octave imple-
mentations that pass finite difference convergence tests when com-
pared against the original energies.

2.1 Implementation of 𝜃
We have implemented both the acos and atan2 versions of 𝜃 :

1 function [final] = Theta_Psi(T)

2 u = [1 0]';

3 v = [0 1]';

4
5 t0 = T(:,1) / norm(T(:,1));

6 t1 = T(:,2) / norm(T(:,2));

7
8 x = dot(t0,t1);

9 y = norm(cross(t0,t1));

10
11 final = acos(x);

12
13 % can also do atan2 here too , results are the same

14 %final = atan2(y,x);

15 end

We also provide its gradient:
1 function [P] = Theta_PK1(T)

2 u = [1 0]';

3 v = [0 1]';

4 I6 = (T * u)' * (T * v);

5 I5u = (T * u)' * (T * u);

6 I5v = (T * v)' * (T * v);

7
8 anti = [0 1; 1 0];

9 uut = [1 0; 0 0];

10 vvt = [0 0; 0 1];

11
12 alpha = I6 / (sqrt(I5u) * sqrt(I5v));

13 P = (1 / (sqrt(I5u) * sqrt(I5v)) * T * anti - ...

14 I6 * (1 / (sqrt(I5v) * I5u ^1.5) * T * uut + 1 / (sqrt(I5u) *

I5v ^1.5) * T * vvt));

15
16 P = (-1.0 / sqrt(1 - alpha * alpha)) * P;

17 end

Finally, we provide our analytic eigensystem (Eqns. 2-7):
1 function [H] = Theta_Hessian_Analytic(T)

2 t0 = T(:,1);

3 t1 = T(:,2);

4 b = cross(t0,t1);

5 b0 = cross(t0,b / norm(b));

6 b1 = cross(t1,b / norm(b));

7
8 cosTheta = dot(t0,t1);

9
10 lambdas = zeros (6,1);

11 lambdas (1) = (cosTheta - 1) / norm(b);

12 lambdas (2) = (cosTheta + 1) / norm(b);

13 lambdas (3) = -1;

14 lambdas (4) = 1;

15 lambdas (5) = -1;

16 lambdas (6) = 1;

17
18 z3 = zeros (3,1);

19 q0 = (1 / (sqrt (2) * norm(b))) * [b; b];

20 q1 = (1 / (sqrt (2) * norm(b))) * [b; -b];

21 q2 = 1 / sqrt (2) * [t0 + b0; z3];

22 q3 = 1 / sqrt (2) * [t0 - b0; z3];

23 q4 = 1 / sqrt (2) * [z3; t1 - b1];

24 q5 = 1 / sqrt (2) * [z3; t1 + b1];

25
26 Q = [q0 q1 q2 q3 q4 q5];

27
28 H = Q * diag(lambdas) * Q';

29 end

Conference’17, July 2017, Washington, DC, USA Alvin Shi, Haomiao Wu, Jarred Parr, A.M. Darke, and Theodore Kim

Running the script Verify_Theta.m performs a finite difference
verification of 𝜃 against 𝜕𝜃

𝜕T , and then
𝜕𝜃
𝜕T against 𝜕2𝜃

𝜕T2 . A randomized
T matrix is generated every time, so running the script repeatedly
verifies against new inputs.

2.2 Implementation of Ψ𝑏
We provide equivalent implementations of Ψ𝑏 :

1 function [final] = Bending_Psi(T)

2 mu = 1;

3 theta0 = pi / 2;

4
5 u = [1 0]';

6 v = [0 1]';

7 I6 = (T * u)' * (T * v);

8 I5u = (T * u)' * (T * u);

9 I5v = (T * v)' * (T * v);

10
11 theta = acos(I6 / (sqrt(I5u) * sqrt(I5v)));

12 final = (mu / 2) * (theta - theta0)^2;

13 end

We also provide its gradient:
1 function [P] = Bending_PK1(T)

2 mu = 1;

3 theta0 = pi / 2;

4
5 u = [1 0]';

6 v = [0 1]';

7 I6 = (T * u)' * (T * v);

8 I5u = (T * u)' * (T * u);

9 I5v = (T * v)' * (T * v);

10
11 anti = [0 1; 1 0];

12 uut = [1 0; 0 0];

13 vvt = [0 0; 0 1];

14
15 alpha = I6 / (sqrt(I5u) * sqrt(I5v));

16 thetaPK1 = (1 / (sqrt(I5u) * sqrt(I5v)) * T * anti - ...

17 I6 * (1 / (sqrt(I5v) * I5u ^1.5) * T * uut + 1 / (sqrt(I5u) *

I5v ^1.5) * T * vvt));

18
19 thetaPK1 = (-1.0 / sqrt(1 - alpha * alpha)) * thetaPK1;

20
21 theta = acos(I6 / (sqrt(I5u) * sqrt(I5v)));

22 P = mu * (theta - theta0) * thetaPK1;

23 end

And finally, its analytic eigensystem (Eqns. 37-42):
1 function [H] = Bending_Hessian_Analytic(T)

2 mu = 1;

3 theta0 = pi / 2;

4
5 t0 = T(:,1);

6 t1 = T(:,2);

7 b = cross(t0,t1);

8 b0 = cross(t0,b / norm(b));

9 b1 = cross(t1,b / norm(b));

10
11 cosTheta = dot(t0,t1);

12 theta = acos(cosTheta);

13
14 dTheta = mu * (theta - theta0);

15 ddTheta = mu;

16
17 diffSq = (theta - theta0) * (theta - theta0);

18 lambdas = zeros (6,1);

19 lambdas (1) = dTheta * (cosTheta - 1) / norm(b);

20 lambdas (2) = dTheta * (cosTheta + 1) / norm(b);

21 lambdas (3) = mu * (1 + sqrt(1 + diffSq));

22 lambdas (4) = mu * (1 - sqrt(1 + diffSq));

23 lambdas (5) = -dTheta;

24 lambdas (6) = dTheta;

25
26 z3 = zeros (3,1);

27 q0 = (1 / (sqrt (2) * norm(b))) * [b; b];

28 q1 = (1 / (sqrt (2) * norm(b))) * [b; -b];

29 q2 = [dTheta * t0 - lambdas (3) * b0;

30 dTheta * t1 + lambdas (3) * b1];

31 q3 = [dTheta * t0 - lambdas (4) * b0;

32 dTheta * t1 + lambdas (4) * b1];

33 q4 = [t0 + b0; -t1 + b1];

34 q5 = [t0 - b0; -t1 - b1];

35
36 q2 = q2 / norm(q2);

37 q3 = q3 / norm(q3);

38 q4 = q4 / norm(q4);

39 q5 = q5 / norm(q5);

40
41 Q = [q0 q1 q2 q3 q4 q5];

42
43 H = Q * diag(lambdas) * Q';

44 end

Similar to the 𝜃 case, the script Verify_Bending.m performs a finite
difference verification ofΨ𝑏 against

𝜕Ψ𝑏
𝜕T , and then 𝜕Ψ𝑏

𝜕T against 𝜕2Ψ𝑏
𝜕T2 .

Again, a randomized T matrix is generated with every run.

3 GRADIENT OF TWISTINGW
To review from the main document, our twisting energy is defined
using edges between the vertices,

e0 = x0 − x1 e1 = x2 − x1 e2 = x3 − x2 . (43)

which are then projected onto the plane orthogonal to e1:

e0⊥ = e0 −
e⊤0 e1
∥e1∥2

e1 e2⊥ = e2 −
e⊤2 e1
∥e1∥2

e1 . (44)

We then assemble a deformation gradient-like matrix

W =

 e0⊥ e2⊥ e1

 ∈ ℜ3×3 . (45)

We perform our eigenanalysis with respect toW, not the original
x𝑖 position variables. Therefore, a change-of-basis matrix 𝜕w

𝜕x must
be derived, where w = vec (W). In the main document, we write
this as

𝜕w
𝜕x

=

1 e⊤0 e1/∥e1 ∥2 − 1 −e⊤0 e1/∥e1 ∥2 0
0 e⊤2 e1/∥e1 ∥2 −e⊤2 e1/∥e1 ∥2 − 1 1
0 −1 1 0

 ⊗ I3, (46)

but eagle-eyed readers will notice that we seem to have forgotten to
differentiate the e⊤0 e1/∥e1 ∥2 and e⊤2 e1/∥e1 ∥2 terms. To the contrary, we
will show that the terms arising from these additional derivatives
resolve to zero. The full derivative is

𝜕ŵ
𝜕x

=

𝜕e0⊥
𝜕x0

𝜕e0⊥
𝜕x1

𝜕e0⊥
𝜕x2

𝜕e0⊥
𝜕x3

𝜕e2⊥
𝜕x0

𝜕e2⊥
𝜕x1

𝜕e2⊥
𝜕x2

𝜕e2⊥
𝜕x3

𝜕e1
𝜕x0

𝜕e1
𝜕x1

𝜕e1
𝜕x2

𝜕e1
𝜕x3

where the block terms work out to

𝜕e0⊥
𝜕x0

=
𝜕e2⊥
𝜕x3

= I −
e1e⊤1
∥e1∥2

𝜕e0⊥
𝜕x1

= (𝛼 − 1) I − e1
∥e1∥2

((2𝛼 − 1)e1 − e0)⊤

𝜕e0⊥
𝜕x2

= −𝛼I − e1
∥e1∥2

(e0 − 2𝛼e1)⊤

𝜕e2⊥
𝜕x1

= 𝛽I − e1
∥e1∥2

(2𝛽e1 − e2)⊤

Supplement to Lifted Curls: A Model for Tightly Coiled Hair Simulation Conference’17, July 2017, Washington, DC, USA

𝜕e2⊥
𝜕x2

= − (𝛽 + 1) I + e1
∥e1∥2

((2𝛽 + 1)e1 − e2)⊤

𝜕e0⊥
𝜕x3

=
𝜕e2⊥
𝜕x0

=
𝜕e1
𝜕x0

=
𝜕e1
𝜕x3

= 0

𝜕e1
𝜕x1

= −I

𝜕e1
𝜕x2

= I

and we set 𝛼 =
e⊤0 e1
∥e1 ∥2 , 𝛽 =

e⊤2 e1
∥e1 ∥2 .

Comparing 𝜕ŵ
𝜕x with 𝜕w

𝜕x , the full derivative does indeed contain
new terms. However, consider a matrix of solely these new terms,(
𝜕w
𝜕x

)
Δ
= 𝜕w

𝜕x − 𝜕ŵ
𝜕x . We can show that when multiplied against the

gradient of the twisting energy, these new terms all resolve to zero:(
𝜕w
𝜕x

)⊤
Δ

𝜕Ψ𝑡
𝜕w = 0.

The vectorized gradient, vec
(
𝜕Ψ𝑡
𝜕W

)
=

𝜕Ψ𝑡
𝜕w can be written:

𝜕Ψ𝑡
𝜕w

=
S (detW) 𝜇 (𝜏 − 𝜏0)
| sin(𝜏) | ∥e2⊥∥ ∥e0⊥∥

©«
e2⊥ − e⊤2⊥e0⊥

∥e0⊥ ∥2
e0⊥

e0⊥ − e⊤0⊥e2⊥
∥e2⊥ ∥2

e2⊥
0

ª®®®¬
and the blocks of

(
𝜕w
𝜕x

)
Δ
are explictly:(

𝜕e0⊥
𝜕x0

)
Δ
=

(
𝜕e2⊥
𝜕x3

)
Δ
=

e1e⊤1
∥e1∥2(

𝜕e0⊥
𝜕x1

)
Δ
=

e1
∥e1∥2

((2𝛼 − 1)e1 − e0)⊤(
𝜕e0⊥
𝜕x2

)
Δ
=

e1
∥e1∥2

(e0 − 2𝛼e1)⊤(
𝜕e2⊥
𝜕x1

)
Δ
=

e1
∥e1∥2

(2𝛽e1 − e2)⊤(
𝜕e2⊥
𝜕x2

)
Δ
= − e1

∥e1∥2
((2𝛽 + 1)e1 − e2)⊤(

𝜕e0⊥
𝜕x3

)
Δ
=

(
𝜕e2⊥
𝜕x0

)
Δ
=

(
𝜕e1
𝜕x0

)
Δ
=

(
𝜕e1
𝜕x1

)
Δ
=

(
𝜕e1
𝜕x2

)
Δ
=

(
𝜕e1
𝜕x3

)
Δ
= 0.

Every block of
(
𝜕w
𝜕x

)⊤
Δ
involves an outer product with e⊤1 , while

every block of 𝜕Ψ𝑡
𝜕w is a linear combination of e0⊥ and e2⊥. By

construction, e1 is orthogonal to e0⊥ and e2⊥, so all the individual
blocks will evaluate to 0, and it must be that

(
𝜕w
𝜕x

)⊤
Δ

𝜕Ψ𝑡
𝜕w = 0.

Therefore, omitting the terms of
(
𝜕w
𝜕x

)
Δ
will not change the final

value of 𝜕Ψ𝑡
𝜕x .

4 MATLAB IMPLEMENTATION AND
VERIFICATION

As with the bending energies, we provide Matlab code that verifies
the results of the prior section. The verification script is as follows:

1 addpath('./util');

2 addpath('./ Twisting ');

3 materialName = sprintf('Twisting ');

4
5 fprintf('==\n');

6 fprintf('Running numerical tests for %s\n', materialName);

7 fprintf('==\n');

8 fprintf('Numerically verifying dWhatdX :\n');

9 Verify_Twist_W(@Twist_W , @dWhatdX);

10 fprintf('Numerically comparing dWdX (*** THIS SHOULD FAIL ***)\n');

11 Verify_Twist_W(@Twist_W , @dWdX);

12 fprintf('Numerically verifying position gradient with dWhatdX :\n')

;

13 Verify_Position_Derivative(@Twist_Psi , @Twist_PK1 , @dWhatdX);

14 fprintf('Numerically verifying position gradient with dWdX:\n');

15 Verify_Position_Derivative(@Twist_Psi , @Twist_PK1 , @dWdX);

16 fprintf('Numerically verifying closeness of dWdX vs. dWhatdX in

position derivative :\n');

17 Verify_Close_Derivatives(@Twist_PK1 , @dWdX , @dWhatdX)

The numerical convergence test on line 11 should fail, as it
does not correspond to the exact derivative of w. However, when
multiplied against 𝜕Ψ𝑡

𝜕w , both 𝜕ŵ
𝜕x (line 13) and 𝜕w

𝜕x (line 15) pro-
duce the exact same result. We further numerically confirm that
𝜕ŵ
𝜕x

⊤ 𝜕Ψ𝑡
𝜕w = 𝜕w

𝜕x
⊤ 𝜕Ψ𝑡

𝜕w by subtracting them from each other on line
17. Randomized positions are generated every time, so running the
script repeatedly verifies against new inputs.

5 PERFORMANCE ANALYSIS
We expand on the performance numbers reported in the main paper.

Wisps Our Analytic
Filter (mm:ss)

Numerical
Filter (mm:ss)

Our Speedup

2000 01:48 (7.7%) 06:32 (21.88%) 3.63×
4000 03:33 (9.2%) 12:53 (27.04%) 3.63×
8000 07:05 (9.0%) 25:16 (24.94%) 3.57×

Table 1: Timings over the first 100 frames of the Hairball
example, using our analytic eigenvalue filtering, and brute-
force numerical clamping. We list both the cumulative run-
ning time over the 100 frames, and the percentage of the
overall running time. Our Speedup is the speedup from us-
ing our analytic approach over the brute-force numerical
eigedecomposition.

5.1 Numerical Eigenvalue Clamping
In lieu of our analytic filtering, we also ran a direct, numerical,
per-element eigendecomposition of each term in our LC energy.
As in previous works [Smith et al. 2019], we found that this can
significantly increase the overall running time (Table 1).

Our approach consistently gave at least a 3.57× speedup in this
stage of system assembly. Without our approach, of all the code
regions timed, numerical eigenvalue clamping became the largest.
Without our analytic filter, numerical eigenvalue computation alone
took almost as much time as, and sometimes more than, the entire
PCG solve.

5.2 Single Strand Examples
Table 2 lists the running times for the single-strand kinematic test
examples (§5.2.1) in the main paper. Each is quite fast and robust.

Conference’17, July 2017, Washington, DC, USA Alvin Shi, Haomiao Wu, Jarred Parr, A.M. Darke, and Theodore Kim

Example DoFs System
Assembly

PCG Total
Time

Smash 403 68.60% 31.40% 0.0075s
Jitter 403 68.95% 31.05% 0.0075s
Straighten 79 77.38% 22.62% 0.0039s

Table 2: Timings are in seconds for a single Δ𝑡 = 1/30 timestep
of BDF-1 with 3 Newton iterations. System Assembly is time
spent in matrix assembly, and PCG is time spent in the linear
solver.

5.3 Block Diagonal Preconditioner
Table 3 shows the overall performance without our preconditioner.
When conjugate gradient with no preconditioner is used, the num-
ber of iterations explodes by orders ofmagnitude. Similar explosions
in iteration count for un-preconditioned systems were observed in
Fei et al. [2017] (Fig. 22 in that paper). In the first timestep of the
2000 wisp simulation, our solver takes 139 iterations to converge.
Without our preconditioner, conjugate gradient takes 27785 itera-
tions, a 66.5× difference in running time. The un-preconditioned
solver takes 98.47% of the running time, and totally dominates the
other simulation stages. Instead of 17 seconds, the first timestep
takes over 18 minutes. Performance degrades further with the size

of the system. For a 4000 wisp simulation, the speedup using our
preconditioner becomes 392×, and for 8000 wisps, 494×.

Eigen’s direct Cholesky solver also did not scale competitively.
The first 10 timesteps of the 2000 wisp scene averaged 33 seconds
for a Cholesky solve, a 5.76× slowdown from our approach. The per-
formance worsened on the 4000 wisp simulation, where Cholesky
took over 1 hour, a 482× slowdown than our approach, and deteri-
orated further with 8000 wisps, which took over 5 hours, and was
slower than our approach by 1130×.

We also ran tests with the version of Pardiso [Bollhöfer et al.
2020] in Intel MKL, and the Algebraic Multigrid preconditioner in
AMGCL [Demidov 2020]. Neither performed better than Eigen’s
Cholesky solver, so further timings were not collected.

REFERENCES
Matthias Bollhöfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020.

State-of-the-Art Sparse Direct Solvers. (2020), 3–33. https://doi.org/10.1007/978-3-
030-43736-7_1

James R Bunch, Christopher P Nielsen, and Danny C Sorensen. 1978. Rank-one
modification of the symmetric eigenproblem. Numer. Math. 31, 1 (1978), 31–48.

Denis Demidov. 2020. AMGCL – A C++ library for efficient solution of large sparse
linear systems. Software Impacts 6 (2020), 100037. https://doi.org/10.1016/j.simpa.
2020.100037

Y. Fei, H. Maia, C. Batty, C. Zheng, and E. Grinspun. 2017. A multi-scale model for
simulating liquid-hair interactions. ACM Trans. Graph. 36, 4 (2017), 1–17.

B. Smith, F. De Goes, and T. Kim. 2019. Analytic eigensystems for isotropic distortion
energies. ACM Trans. Graph. 38, 1 (2019), 1–15.

https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1007/978-3-030-43736-7_1
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037

Supplement to Lifted Curls: A Model for Tightly Coiled Hair Simulation Conference’17, July 2017, Washington, DC, USA

Wisps DoFs Collision
Handling

System
Assembly

PCG Total
Time

Cholesky
(hh:mm:ss)

Our
Speedup

No Precond.
(hh:mm:ss)

Our
Speedup

2,000 806,000 06.27s (35.4%) 05.71s (32.3%) 05.73s (32.4%) 17.7s 00:00:33 5.76× 00:18:40 195×
4,000 1,612,000 09.91s (35.9%) 9.27s (33.6%) 08.42s (30.5%) 27.6s 01:07:38 482× 00:55:04 392×
8,000 3,224,000 19.9s (34.9%) 19.3s (33.9%) 17.8s (31.2%) 57.0s 05:35:32 1130× 02:26:38 494×

Table 3: Timings are in seconds for a single Δ𝑡 = 1/30 timestep of BDF-1 with 3 Newton iterations. Collision Handling includes
detection and response, and System Assembly is time spent in matrix assembly, minus collision forces. PCG is time spent
in the linear solver. Cholesky lists timings in (hh:mm:ss), if Cholesky is used instead of PCG. No Precond. lists timings in
(hh:mm:ss) when no preconditioner is used. Our Speedup is the solver speedup using our PCG version over Cholesky or no
preconditioning.

	1 Rank-One Update of 2T2
	1.1 Normalizing the Update Vector
	1.2 Projection Onto q0…5
	1.3 Building the Secular Equation
	1.4 Updating the Eigenvectors
	1.5 The Full Rank-One Updated System

	2 Matlab Implementation and Verification
	2.1 Implementation of
	2.2 Implementation of b

	3 Gradient of Twisting W
	4 Matlab Implementation and Verification
	5 Performance Analysis
	5.1 Numerical Eigenvalue Clamping
	5.2 Single Strand Examples
	5.3 Block Diagonal Preconditioner

	References

