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A Unified Analysis of Penalty-Based Collision Energies

ALVIN SHI and THEODORE KIM, Yale University, USA

Fig. 1. Cable stretching simulation using penalty-based collisions. Our analytic filter (left) proceeds smoothly,
while Gauss-Newton (right) causes cables to incorrectly pop through (red arrows).

We analyze a wide class of penalty energies used for contact response through the lens of a reduced frame.
Applying our analysis to both spring-based and barrier-based energies, we show that we can obtain closed-
form, analytic eigensystems that can be used to guarantee positive semidefiniteness in implicit solvers. Our
approach is both faster than direct numerical methods, and more robust than approximate methods such
as Gauss-Newton. Over the course of our analysis, we investigate physical interpretations for two separate
notions of length. Finally, we showcase the stability of our analysis on challenging strand, cloth, and volume
scenarios with large timesteps on the order of 1/40 s.
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1 INTRODUCTION
Robust collision response is an integral part of any deformable body simulation, such as those used
in feature film production, games, and biology. Perhaps the simplest approach is a penalty-based
response, which applies forces to primitives that have violated some distance threshold.

In order to obtain stable motion under large timesteps, implicit solvers require the gradients of
these forces [Baraff and Witkin 1998]. However, these gradients can produce indefinite systems, so
they are commonly filtered to be positive-semi-definite (PSD) by removing negative eigenvalues at
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each quadrature point using a numerical factorization [Teran et al. 2005], or by applying a Gauss-
Newton approximation [Choi and Ko 2002; Kim and Eberle 2022; Zehnder et al. 2021]. A better
approach is to use a fast, analytic eigendecomposition, but while these have been constructed for a
wide variety of deformation energies [Kim 2020; Lin et al. 2022; Smith et al. 2019], penalty-based
collisions have not undergone the same treatment. This is unfortunate, because we have found that
they can provide significant gains in speed and robustness.
We perform this analysis by recasting collisions in terms of a novel reduced frame, C. From

this perspective, a unified treatment emerges that encapsulates both vertex-face and edge-edge
collisions. From there, we can perform a generic eigenanalysis that yields closed-form expressions
for the eigendecomposition of penalty-based force gradients. Over the course of this analysis, we
present a notion of signed and unsigned length that is applicable to a variety of collision energies.
We then recast several commonly-used energies in terms of these length measures.

Our final analysis is performed on general penalty energies involving unsigned and signed length.
We show a variety of scenarios where applying our approach is significantly faster than computing
a numerical eigendecomposition, and more robust than using approximate force gradients.

2 PREVIOUS WORK
2.1 Penalty-Based Collision Energies
2.1.1 Spring Energies. Penalty-based collision forces are a well-established method for handling
contact in deformable body simulation [Baraff and Witkin 1998; Jimenez and Luciani 1993]. Object
inter-penetrations are suppressed by inserting a spring between vertex-face or edge-edge pairs
that cross a distance threshold. They have similarly been used for cloth at least since Baraff and
Witkin [1998], though additional challenges arise when inside/outside queries become unavailable.
For example, Teran et al. [2005] use quadratic energies to generate filtered force gradients for
self-collisions that occur during muscle and flesh simulation.

Strand collisions can be viewed as a collection of edge-edge resolutions [Spillmann and Teschner
2007], and have additionally been used to simulate cohesion [Ward et al. 2004] in addition to contact
repulsion. Many works [Chang et al. 2002; Choe et al. 2005; Selle et al. 2008] use penalty forces
during hair simulation, and stiff springs to adhere joints in woven cloth [Michels et al. 2015].
Specific simulation goals have given rise to a variety of spring penalty formulations. Gast et al.

[2015] introduce a linear falloff in the spring constant, yielding a cubic energy, and McAdams et al.
[2011] use a control variable to interpolate between isotropic and anisotropic springs. Spring-like
forces are also used to simulate clumping in wet hair, where Lin et al. [2011] use “wetness” to
determine the activation distance for adhesive springs at strand joints, while Fei et al. [2017] use
cross-sectional surface areas to govern the strength of inter-strand cohesion.

2.1.2 Barrier Energies. Barrier-type energies contain terms that grow to infinity under special
conditions, effectively prohibiting specific configurations while maintaining a penalty-like ap-
proach [Schüller et al. 2013]. Recently, Incremental Potential Contact (IPC) has made extensive use
such energies for collisions, and utilize similar per-element PSD projections [Li et al. 2020]. This
underlying framework is extensible to codimensional settings featuring volumes and cloth [Li et al.
2021], rigid bodies [Lan et al. 2022], and generalized solvers [Chen et al. 2022]. Our eigenanalysis
extends equally well to the vertex-face and edge-edge energies used in these IPC-style solvers.

2.2 Analytic Eigenanalysis
Several techniques have been developed for analytically computing the eigensystems of various
force gradients. However, these have all been for specific cases of hyperelastic materials, not the
collision energies that are the focus of this paper.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.



A Unified Analysis of Penalty-Based Collision Energies 1:3

Smith et al. [2019] performed an eigenanalysis of hyperelastic deformation energies through the
introduction of novel stretch-based invariants, which was later extended to membrane stretching
energies [Kim 2020; Panetta 2020]. Lin et al. [2022] used a polynomial-based method on the Cauchy-
Green invariants to perform an alternate analysis of ARAP-style [Sorkine and Alexa 2007] materials.
All of these analyses offer broad techniques for constructing fast, analytic eigendecompositions,
but to our knowledge, ours is the first to attempt a similar analysis on collision energies.

2.3 Complementary Approaches
Complementary collision response strategies have been developed to address more extreme collision
scenarios, and deployed in addition to penalty-based energies. Such treatments include linear
complementarity formulations [Bridson et al. 2003; Gascón et al. 2010], with careful considerations
toward preventing artifacts that arise from direct vertex corrections. Eulerian grids have also been
investigated for collision resolution, leveraging incompressibility conditions [McAdams et al. 2009;
Teng et al. 2016] or velocity constraints [Levin et al. 2011] to maintain a penetration-free state. The
success of these methods are then linked to grid resolution. Müller et al. [2015] construct volumetric
“air” elements between objects that strictly prohibit negative volume, but element construction for
complex scenes introduces additional difficulties.

Perhaps the closest approach to our reduced frame is in Jiang et al. [2017], where theRmatrix from
the QR factorization is used to construct a deformation-specific frame. However, their factorization
is used to construct a new elastic potential, not analyze existing ones. We investigate directions,
while they generate forces.

3 A REDUCED COLLISION FRAME
In the following, we will denote matrices capital bold (X), vectors with lower-case bold (x), and
scalars with unbolded lower-case (𝑥). Normalized vectors are denoted with a hat (x̂). We also use
the tensor unfolding operator Vec(·) [Golub and Van Loan 2013; Kim and Eberle 2022].

In collision processing, length is the most basic geometric computation, because it asks: are two
primitives close to each other? We characterize this with a generic signed length function

𝑙 (e𝑖 , e𝑗 , e𝑘 ) =
e𝑘 · (e𝑖 × e𝑗 )e𝑖 × e𝑗

 . (1)

The challenge is then to define the e𝑖, 𝑗,𝑘 edges appropriately. In order to arrive at a unified analysis
of both vertex-face and edge-edge collision energies, we will define the edges in terms of a projected
collision frame that contains all the important geometric information for collisions, while discarding
everything else. This frame will then form the basis for our analysis.

3.1 Vertex-Face and Edge-Edge Lengths
For vertex-face collisions, we denote e0 and e1 as the two edges of the triangle face, and e2 as the
vector from any vertex on the triangle to the collision vertex (Fig. 2, left). With these edges defined,
𝑙 (e0, e1, e2) gives us the desired point-plane distance.

We observe that {e0,e1, e2} do not generally form an orthogonal frame. This is most visible
with e2 in Fig. 2 (left), which contains components that are tangential to the triangle face. This
extraneous information is not required to compute point-to-plane distance.
For two edges in collision, we denote e0 and e1 as the two nearby edges and eab as the vector

of least distance between them (Fig. 2, right). This is usually found with a geometric test [Rhodes
2001] and the signed length is computed as 𝑙 (e0, e1, eab). Again, since {e0,e1, eab} is not generally
orthogonal, we see that the edges contain extraneous information.
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Fig. 2. Left: The vertex-face collisions. The e0 and e1 edges are along the triangle face, and e2 is a vector from
the triangle to the collision vertex. Right: Edge-edge collisions. The e0 and e1 edges are being checked, and e2
is the vector pointing from the start of e0 to the start of e1. eab is the vector of least distance from e0 to e1.

3.2 Our Reduced Frame
In order to distill the problem down to its fundamental geometry, we propose a reduced collision
frame, which we denote C =

(
e0⊥ e1⊥ e2⊥

)
. Here, e0⊥, e1⊥, and e2⊥ are orthogonalized versions

of the edges from the above collision cases. This frame is distinct from a QR factorization, because
we orthogonalize the vectors but do not normalize them, as that would discard important geometric
information. This frame closely mirrors the deformation gradient commonly used in the finite
element analysis [Bonet and Wood 2008], where irrelevant translation modes are discarded from
the analysis by taking the deformation derivative.

The reduced vertex-face and edge-edge collision frames can then be formulated as:

C =
©« e0 e1 − 𝛼e0 e2 − 𝛽e0 − 𝛾e1

ª®¬ (2)

where 𝛼 , 𝛽 , and 𝛾 are modified Gram-Schmidt orthogonalization constants. These edges are then
sent to 𝑙 (Eqn. 1).
One immediate objection to this approach is that 𝛼 , 𝛽 , and 𝛾 depend on the edges, so the

complexity of the derivatives could potentially explode when computing forces. This may be true
for general functions, but not for the case of collisions. We will see in §4.3 that, aside from an
easy-to-filter term, all potential sources of complexity when calculating gradients and Hessians of
energy functions go to zero.

4 AN ANALYSIS OF COLLISION ENERGIES
We can now use our reduced collision frame to analyze signed length, and from there, generic
collision energies.

4.1 Existing Analysis Methods
We begin by observing that existing analysis methods are insufficient. We tried to adapt existing
deformation gradient-based methods [Kim et al. 2019], but it only yielded an analysis for unsigned
lengths 𝑢 = ∥e2⊥∥. This is insufficient because many collision energies use the sign to determine
whether a vertex is approaching (positive) or already in collision (negative) with a face.

We show the results of this analysis in Appendix A. In general, they use matrix invariants along
the lines of 𝐼3 (C) = detC and 𝐼5 (C, v) = v⊤C⊤Cv. For unsigned length specifically, the cross-terms
that arise from differentiating these invariants are numerous and nontrivial, and result in rank-one
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updates that necessitate numerical root-finding. Overall, we did not find this to be a promising
path towards an analytic eigensystem.

4.2 Signed Length Analysis
Instead, wewill analyze a generic collision energy that depends on the length between two primitives
Ψ(𝑙), which we abbreviate Ψ𝑙 . Our goal is to gain a detailed understanding of the derivatives of this
function with respect to our reduced collision frame C. In §4.3.1, we will show how to transform
these generic results back to the vertex-face and edge-edge cases.

In particular, we seek the eigensystem of the Hessian of Ψ𝑙 :

𝜕2Ψ𝑙
𝜕c2

=
𝜕Ψ𝑙
𝜕𝑙

H𝑙 +
𝜕2Ψ𝑙
𝜕𝑙2

g𝑙g
⊤
𝑙

(3)

where c = Vec (C), H𝑙 =
𝜕2𝑙
𝜕c2 , and g𝑙 =

𝜕𝑙
𝜕c . We will see later on that g𝑙 resides in the nullspace of

H𝑙 , so the main challenge is to find the eigensystem of H𝑙 .
In contrast to the matrix invariant approach, we have found that direct inspection of the Hessian

reveals its underlying structure. We directly examine H𝑙 :

H𝑙 =

©«
𝜕2𝑙
𝜕e20⊥

𝜕2𝑙
𝜕e1⊥𝜕e0⊥

𝜕2𝑙
𝜕e2⊥𝜕e0⊥

... 𝜕2𝑙
𝜕e21⊥

𝜕2𝑙
𝜕e2⊥𝜕e1⊥

. . . . . . 𝜕2𝑙
𝜕e22⊥

ª®®®®®¬
, (4)

where the blocks are composed of second derivatives of 𝑙 :

𝜕2𝑙

𝜕e2⊥𝜕e0⊥
= −𝑙

e2⊥e⊤0⊥
∥e2⊥∥2 ∥e0⊥∥2

𝜕2𝑙

𝜕e2⊥𝜕e1⊥
= −𝑙

e2⊥e⊤1⊥
∥e2⊥∥2 ∥e1⊥∥2

(5)

𝜕2𝑙

𝜕e20⊥
=

−𝑙
∥e0⊥∥2

(I − ê0⊥ê⊤0⊥ − ê1⊥ê⊤1⊥)
𝜕2𝑙

𝜕e21⊥
=

−𝑙
∥e1⊥∥2

(I − ê0⊥ê⊤0⊥ − ê1⊥ê⊤1⊥) (6)

𝜕2𝑙

𝜕e1⊥𝜕e0⊥
=

𝜕2𝑙

𝜕e22⊥
= 03×3. (7)

A detailed derivation of these blocks is given in the supplemental materials. The matrix is symmetric,
so we have fully described its entries. We observe that all of the individual blocks are either outer
product or projection terms, which allows us to state the eigensystem of H𝑙 directly:

𝜆𝑙0,1 =
−𝑙

2 ∥e1⊥∥2
(1 ± 𝑓 (1, 2)) q𝑙0,1 =

©«
03
e2⊥
𝜔e1⊥

ª®¬ (8)

𝜆𝑙2,3 =
−𝑙

2 ∥e0⊥∥2
(1 ± 𝑓 (0, 2)) q𝑙2,3 =

©«
e2⊥
03

𝜔e0⊥

ª®¬ (9)

where 03 and 03×3 respectively denote a vector-3 and 3 × 3 matrix of zeros, and

𝜔 =
𝜆𝑙0,1,2,3(

𝜆𝑙0,1,2,3 −
𝑙

∥e2⊥ ∥2
) 𝑓 (𝑖, 𝑗) =

√√√
1 + 4

(
∥e𝑖⊥∥e𝑗⊥

)2
. (10)

Thus, while H𝑙 ∈ R9×9, we can now see that it is rank-4, and contains a rank-5 nullspace.
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Fig. 3. Eigenvectors of 𝜕2Ψ𝑙
𝜕c2 . The q0 and q1 vectors respectively represent buckling and rotation in the

direction of e1⊥, while q2 and q3 are analogous modes along e0⊥, and q4 is a purely compressive mode.

These simple expressions are possible because of the orthogonality of our reduced frame.Without
it, Eqns. 5-7 balloon in complexity, making an analytic eigensystem intractable. For more details on
how we derive H𝑙 , see the supplement.
With the eigensystem (Eqns. 8 and 9) in hand, we can return to the generic problem of 𝜕2Ψ𝑙

𝜕c2

(Eqn. 3). In that equation, the 𝜕Ψ𝑙
𝜕𝑙

term simply scales the eigenvalues of H𝑙 . Additionally,

g𝑙 =
𝜕𝑙

𝜕c
=

©«
03
03

𝑙
∥e2⊥ ∥ ê2⊥

ª®¬
is orthogonal to H𝑙 , because its sole entry e2⊥ is known to be orthogonal to the corresponding
𝜔e0⊥ or 𝜔e1⊥ terms in q𝑙0,1,2,3. Thus, g𝑙 must form a fifth eigenpair whose eigenvalue is 𝜕2Ψ𝑙

𝜕𝑙2 . The
complete rank-5 eigensystem for generic collision energies is then:

𝜆0,1 =
−𝑙

2 ∥e1⊥∥2
(1 ± 𝑓 (1, 2)) 𝜕Ψ𝑙

𝜕𝑙
q0,1 =

©«
03
e2⊥
𝜔e1⊥

ª®¬ (11)

𝜆2,3 =
−𝑙

2 ∥e0⊥∥2
(1 ± 𝑓 (0, 2)) 𝜕Ψ𝑙

𝜕𝑙
q2,3 =

©«
e2⊥
03

𝜔e0⊥

ª®¬ (12)

𝜆4 =
𝜕2Ψ𝑙
𝜕𝑙2

q4 = g𝑙 . (13)

4.2.1 Discussion. Physically, q0, q2, and q4 correspond to compression modes in the reduced frame,
while q1 and q3 are rotation modes. Eigenvalue filtering can then be interpreted as disambiguating
between two particular rotation and compression modes, along with filtering compression in the
normal direction (Fig. 3).

4.3 Filtering in State Space
Our generic analysis can be applied to vertex-face collisions by introducing an appropriate change-
of-basis. If we denote the stacked vector of vertex positions v𝑖 as x ∈ R12, the force and stiffness
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densities can respectively be written using the chain rule:
𝜕Ψ

𝜕x
=

𝜕c
𝜕x

⊤ 𝜕Ψ

𝜕c
(14)

𝜕2Ψ

𝜕x2
=

𝜕c
𝜕x

⊤ 𝜕2Ψ

𝜕c2
𝜕c
𝜕x

+ 𝜕Ψ

𝜕c
: 𝜕

2c
𝜕x2

(15)

where : is a tensor double contraction [Kim and Eberle 2022]. Our eigenanalysis of 𝜕2Ψ
𝜕c2 now seems

to be insufficient, because the double contraction term appears to add a difficult new term that
must also be analyzed. However, the orthogonality properties of C allow us to express everything
in terms of 𝜕2Ψ

𝜕c2 .
By treating the orthogonalization scalars 𝛼 , 𝛽 , and 𝛾 as though they were constant, we decompose

𝜕c
𝜕x into the sum of a simple term

(
𝜕c
𝜕x

)
𝑠
and a remainder term

(
𝜕c
𝜕x

)
Δ
. The gradient and Hessian can

then be written in the following forms:
𝜕Ψ

𝜕x
=

(
𝜕c
𝜕x

)⊤
𝑠

𝜕Ψ

𝜕c
(16)

𝜕2Ψ

𝜕x2
=

(
𝜕c
𝜕x

)⊤
𝑠

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
𝑠

−
(
𝜕c
𝜕x

)⊤
Δ

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
Δ

(17)

This transformation is shown in detail in Appendix B.1.
These expressions avoid the need to compute the unwieldy 3rd order tensor 𝜕2c

𝜕x2 ∈ R9×12×12,
and an analytic filtering strategy immediately becomes apparent. Equipped with the analytic
eigensystem for 𝜕2Ψ

𝜕c2 , we can pin negative eigenmodes to zero in the first term in Eqn. 17, and pin
the positive eigenmodes to zero for the second term, resulting in a PSD matrix.

4.3.1 Applying to Vertex-Face and Edge-Edge Energies. The general simplified expression for 𝜕c
𝜕x

can be written as so: (
𝜕c
𝜕x

)
𝑠

=
©«

𝜕e0
𝜕x

⊤

𝜕e1
𝜕x

⊤ − 𝛼
𝜕e0
𝜕x

⊤

𝜕e2
𝜕x

⊤ − 𝛽
𝜕e0
𝜕x

⊤ − 𝛾
𝜕e1
𝜕x

⊤

ª®®¬ (18)

𝛼 =
e0 · e1
∥e0∥2

𝛽 =
∥e1∥2 (e0 · e2) − (e0 · e1) (e1 · e2)

∥e0∥2 ∥e1∥2 − (e0 · e1)2
𝛾 =

∥e0∥2 (e1 · e2) − (e0 · e1) (e0 · e2)
∥e0∥2 ∥e1∥2 − (e0 · e1)2

Evaluating for vertex face (vf) and edge-edge (ee) collision geometries (Fig. 2), we obtain:(
𝜕cvf
𝜕x

)
𝑠

=
©«
0 1 −1 0
0 −𝛼 𝛼 − 1 1
1 −𝛽 𝛽 + 𝛾 − 1 −𝛾

ª®¬ ⊗ I3
(
𝜕cee
𝜕x

)
𝑠

=
©«
−1 1 0 0
𝛼 −𝛼 −1 1

𝛽 − 1 −𝛽 1 + 𝛾 −𝛾
ª®¬ ⊗ I3 (19)

Where I3 is a 3 × 3 identity matrix and ⊗ is a Kronecker product.
In general, the remainder term is(

𝜕c
𝜕x

)
Δ

= −
©«

0⊤12
e0 𝜕𝛼𝜕x

⊤

e0
𝜕𝛽

𝜕x
⊤
+ e1

𝜕𝛾

𝜕x
⊤

ª®®¬ (20)

where 012 is a vector-12 of all zeros. Explicit evaluation for the vertex-face and edge-edge case are
somewhat involved, so we have included their exact forms as Matlab functions. See the functions
in Projection/ to get 𝜕𝛼

𝜕x ,
𝜕𝛽

𝜕x , and
𝜕𝛾

𝜕x for vertex-face and edge-edge collisions.
Replacing c with cvf or cee in Eqns. 16 and 17 yield the full gradients and Hessians.
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4.4 Signed Length Energies
Once a penalty energy has been rewritten in terms of signed length 𝑙 , Eqns. 11-13 can be used to
obtain the analytic eigensystem of the Hessian for both the edge-edge and vertex-face case. Letting
𝜖 be the activation distance and 𝑘 be a force constant, several common penalty energies can be
rewritten into this form.

4.4.1 Quadratic Penalty. Inserting a stiff penalty spring at a small distance threshold prevents
interpenetration, and can reduce the system sizes needed for constraint-based collision resolution
[Bridson et al. 2002; Harmon et al. 2008]. The quadratic energy in terms of signed length 𝑙 is:

Ψlq (𝑙) =
{
𝑘 (𝑙 − 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
. (21)

Fully working out the analytic eigensystem, we have

𝜆0,1 =
𝑘𝑙 (𝜖 − 𝑙)
∥e1⊥∥2

(1 ± 𝑓 (1, 2)) q0,1 =
©«

03
e2⊥
𝜔e1⊥

ª®¬ (22)

𝜆2,3 =
𝑘𝑙 (𝜖 − 𝑙)
∥e0⊥∥2

(1 ± 𝑓 (0, 2)) q2,3 =
©«
e2⊥
03

𝜔e0⊥

ª®¬ (23)

𝜆4 = 2𝑘 q4 = g𝑙 (24)

where 𝜔 and 𝑓 (𝑖, 𝑗) are as defined in Eqn. 10. Here, we see that the fourth eigenmode corresponds
precisely with simple harmonic motion in the direction of e2⊥ and is always positive.

Analyzing signs, we additionally note that 𝑓 (𝑖, 𝑗) is always positive and greater than 1, meaning
that one of 𝜆0,1 and 𝜆2,3 is always negative due to the multiplication by (1 ± 𝑓 (𝑖, 𝑗)). As a result,
one eigenmode of each pair always gets filtered. Furthermore, since 𝑙 < 𝜖 is guaranteed, only the
sign of 𝑙 determines which vectors should be filtered between them.

We also make use of an analogous quadratic penalty energy using unsigned length Ψuq:

Ψuq (𝑢) =
{
𝑘 (𝑢 ∓ 𝜖)2 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(25)

Where + is chosen when interpenetrations are detected and − is chosen otherwise. Eigenanalysis
in this case comes from Eqns. 51 and 52, where we plug in derivatives with respect to 𝑢.

4.4.2 Adaptive Spring. Higher order versions of these energies have also been formulated. For
example, Gast et al. [2015] use a cubic penalty energy to resolve collisions, modelled after a linearly
varying spring constant,

Ψcubic (𝑙) =
{
𝑘 (𝑙 − 𝜖)2

√︁
(𝑙 − 𝜖)2 + 𝛿 𝑙 < 𝜖

0 𝑙 ≥ 𝜖
(26)

where 𝛿 is a regularization constant to avoid singularities in the square root under differentiation.
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By applying the general equations, the eigensystem is as follows:

𝜆0,1 =
𝑘𝑙 (𝜖 − 𝑙) (3(𝑙 − 𝜖)2 + 2𝛿)
2 ∥e1⊥∥2

√︁
(𝑙 − 𝜖)2 + 𝛿

(1 ± 𝑓 (1, 2)) q0,1 =
©«

03
e2⊥
𝜔e1⊥

ª®¬ (27)

𝜆2,3 =
𝑘𝑙 (𝜖 − 𝑙) (3(𝑙 − 𝜖)2 + 2𝛿)
2 ∥e0⊥∥2

√︁
(𝑙 − 𝜖)2 + 𝛿

(1 ± 𝑓 (0, 2)) q2,3 =
©«
e2⊥
03

𝜔e0⊥

ª®¬ (28)

𝜆4 =
𝑘 (6(𝑙 − 𝜖)4 + 9𝛿 (𝑙 − 𝜖)2 + 2𝛿2)

((𝑙 − 𝜖)2 + 𝛿) 3
2

q4 = g𝑙 . (29)

Looking closely at the signs, filtering between q0,1 and q2,3 once again comes down to the sign of 𝑙 ,
while 𝜆4 is always positive.

4.4.3 Barrier Energies. IPC solvers use barrier energies to simulate a wide variety of collisions [Li
et al. 2021]. These can be rewritten as:

Ψbarrier (𝑙) =
{
−(𝑙 − 𝜖)2 ln

(
𝑙
𝜖

)
0 < 𝑙 < 𝜖

0 𝑙 ≥ 𝜖.
(30)

The analytic eigensystem is then

𝜆0,1 =
(𝜖 − 𝑙)

(
𝜖 − 𝑙 − 2 ln

(
𝑙
𝜖

))
2 ∥e1⊥∥2

(1 ± 𝑓 (1, 2)) q0,1 =
©«

03
e2⊥
𝜔e1⊥

ª®¬ (31)

𝜆2,3 =
(𝜖 − 𝑙)

(
𝜖 − 𝑙 − 2 ln

(
𝑙
𝜖

))
2 ∥e0⊥∥2

(1 ± 𝑓 (0, 2)) q2,3 =
©«
e2⊥
03

𝜔e0⊥

ª®¬ (32)

𝜆4 =
(𝜖 − 𝑙) (𝜖 + 3𝑙)

𝑙2
− 2 ln

(
𝑙

𝜖

)
q4 = g𝑙 (33)

Interestingly, 𝜆0, 𝜆2, and 𝜆4 are always positive while the other eigenvalues are always negative,
meaning that filtering the barrier energy does not require any sign checks. However, since barrier
energies are undefined when signed length is negative, they become unsuitable for solvers that are
expected to deal with unavoidable interpenetration, as with the scripted intersection of kinematic
objects [Baraff et al. 2003; Daviet 2020].

4.5 Hybrid Energies
McAdams et al. [2011] characterize stiff springs using an𝑚 parameter to control the anistropy of
the response, observing that higher anisotropy enables more tangential sliding.

Reformulating in terms of signed and unsigned length, we see that this tangential sliding corre-
sponds to the difference in eigensystems between signed and unsigned length Hessians. For signed
length, any tangential motion comes with a corresponding motion in one of the face vertices (Fig.
3). For unsigned length, pure tangential motion make up two of the three eigenvectors (Fig. 8).
If we characterize hybrid length as ℎ = 𝑙 ·𝑚 + (1 −𝑚) · 𝑢, with 0 ≤ 𝑚 ≤ 1 as the anisotropy

parameter, the mixed energy becomes

ΨMcAdams (ℎ) =
{
𝑘 (ℎ − 𝜖)2 ℎ < 𝜖

0 ℎ ≥ 𝜖
(34)
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and the Hessian becomes:

𝜕2Ψ

𝜕c2
=

(
𝜕2Ψ

𝜕𝑙2
+ 𝜕2Ψ

𝜕𝑢2 + 2 𝜕
2Ψ

𝜕𝑙𝜕𝑢

)
g𝑙g

⊤
𝑙
+ 𝜕Ψ

𝜕𝑙
H𝑙 +

𝜕Ψ

𝜕𝑢
H𝑢 (35)

where H𝑢 = 𝜕2𝑢
𝜕c2 . Our analysis gives us the full eigensystem for the sum of the first two terms

with Eqns. 11-13, with the slight modification of 𝜆4 =
(
𝜕2Ψ
𝜕𝑙2 + 𝜕2Ψ

𝜕𝑢2 + 2 𝜕2Ψ
𝜕𝑙𝜕𝑢

)
. Invariant analysis in

Appendix A further reveals the eigenpairs of the final term (Eqn. 52). These terms can thus be
filtered separately and then summed, yielding an analytic filtering strategy.

5 RESULTS
5.1 Matlab Verification
To ensure that our analyses are correct, we have provided Matlab implementations of key formulas,
along with numerical tests. Verify_General_Length.m verifies the eigensystems for H𝑙 (Eqns. 8
and 9) and H𝑢 (Eqns. 51 and 52) by generating random reduced frames and comparing the analytic
outer-product decomposition with finite differences.

We also provide Hessian eigensystems for Ψlq and Ψuq with the same numerical test, along with
numerical verification for Eqns. 16 and 17 for each case of signed/unsigned length and vertex-
face/edge-edge collision (see Verify_[lq/uq]_Collision_[vf/ee].m).

5.2 Test Scenes
5.2.1 Cable Stretching. Beginning with an implicit strand solver [Bergou et al. 2010], we pull
two collections of cables against each other by moving their endpoints in opposite directions and
resolve collisions with various penalty energies. We used an implicit solver [Baraff and Witkin
1998] with a large time step of Δ𝑡 = 1/30. To better view the unadorned stability behavior of the
collision energies, no line search was used.
We initialized the cables with a Young’s modulus 𝐸 = 104 Pa and a Poisson’s ratio 𝜈 = 0.36. All

quadratic penalties had the same spring constant 𝑘 = 10 N/m and distance envelope 𝜖 = 0.09 m. We
set a gravitational force to induce an acceleration of 9.81 m/s2. To prevent excessive oscillations,
we also incorporated Rayleigh damping with a factor 𝛽 = 0.006.

We see that Gauss-Newton approximations of the Hessian discards important information. When
equipped with Ψuq, the jittering in Gauss-Newton causes cables under tension to unrealistically
pop through (Fig. 1). Analytically clamping the same scene correctly resolves the contact.

Stretching the cables again with Ψlq, Gauss-Newton persistently contains jittering artifacts. The
jittering diminishes when using our approach, but still remains present. However, these artifacts
arise from the collision energy itself, not the filtering strategy. When we use a hybrid energy
along the lines of Cheng et al. [2022], which falls back to Ψuq when the closest point on the edge
corresponds to an endpoint, we obtain less jittery results. Simply passing in the unfiltered Hessian
with the same scene parameters results in an explosion immediately after the first few contacts.

The energies exhibited qualitative differences that correspond to their formulations. Unsigned
penalty forces that do not explicitly cancel off tangential sliding were “stickier” than their signed
counterparts (Fig. 4).

5.2.2 Fabric Stretching. We ran a test similar to the cable example with an implicit cloth solver
[Baraff and Witkin 1998], Δ𝑡 = 1/40, and no line search, pulling two pieces of cloth against each
other (Fig. 5). We initialized the fabrics with an ARAP membrane stretching energy [Kim et al.
2019] with 𝜇stretch = 10 and a dihedral bending energy with 𝜇bend = 0.01. All quadratic penalties
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Fig. 4. Frame 45 of the cable stretching simulation with varying collision energies. Unsigned length (left) and
hybrid energies (middle) exhibit "stickier" behavior, while the signed length spring penalty (right) is quicker
to clump towards the middle.

Fig. 5. Fabric stretching simulation using Ψlq for vertex-face, and Ψuq for edge-edge collisions.

were set with a spring constant 𝑘 = 4000 N/m and a distance envelope 𝜖 = 0.02 m. Gravity was set
to be 1 m/s2. To prevent excessive oscillations, we used Rayleigh damping with 𝛽 = 1.
Picking between Ψlq or Ψuq for vertex-face and edge-edge collisions results, we simulated two

cloth pulling tests. As seen in the video, Gauss-Newton approximation results in jittery cloth across
the board, while our analytic clamping smoothly settles.

5.2.3 Hammock Drop. We evaluated the qualitative behavior of a variety of energy combinations
in a more complex collision scenario (Fig. 6) where several patches of cloth are dropped onto a
hammock and then slide off. The differences in “stickiness” between energies is visible in the way
that the cloth bunches and the rates at which different patches fall away. The simulation parameters
were the same as §5.2.2, except that Rayleigh damping was set to zero.

5.2.4 VolumetricMeshes. We showcase the necessity of negative eigenvalue filtering in a volumetric
example, where we lower a set of volumetric rods onto a collection of thicker rods with a time step
Δ𝑡 = 1/40 s and no line search.
We used a Stable Neo-Hookean distortion energy [Smith et al. 2018] with 𝐸 = 104 Pa and

𝜈 = 0.45. We set gravity to 1 m/s2 as well. For collision response, we used Ψlq and Ψuq for the
vertex-face and edge-edge collision penalties, respectively. Both were initialized with a spring
constant 𝑘 = 1200 N/m and a distance envelope 𝜖 = 0.02 m. Rayleigh damping was at 𝛽 = 0.25.
Disabling eigenvalue filtering in Ψlq and Ψuq results in indefinite systems that lead to obvious

artifacts around frame 170 and a subsequent explosion (Fig. 7). All the other unfiltered scenes
exhibited similar behavior.
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Fig. 6. Dropping pieces of cloth on a hammock with different collision energies yields different behaviors.
The specific vertex-face (VF) and edge-edge (EE) energies used are listed along the left. From left to right,
the “stickiness” that the collision energy gives the red cloth determines whether the blue cloth falls away
at frame 240. Similarly, the stickiness determines whether the red cloth remains by frame 410 (right). We
analytically filtered all of the collision energies, and ran the simulations at Δ𝑡 = 1/40 s

These observations are in line with previous work, which stress the necessity of eigenvalue
filtering for PSD-projection not only for collisions [Li et al. 2020], but also several other deformation
energies [Kim et al. 2019; Lin et al. 2022; Smith et al. 2019; Teran et al. 2005].

5.3 Performance
We initialized 107 random vertex arrangements and compared the performance of our analytic
approach with the numerical eigensolver solver in Eigen [Guennebaud et al. 2010] and Gauss-
Newton approximation. Our technique is 4.5× - 7.2× faster than the numerical eigensolver, and
requires only 8% − 70% more computation than the single outer product for Gauss-Newton. As
shown in Fig. 1, this modest overhead significantly reduces jittering and pop-through.

6 CONCLUSIONS AND FUTUREWORK
We have presented an eigenanalysis of energies used for vertex-face and edge-edge collisions
in implicit solvers. By using analytic methods to filter negative eigenvalues, we obtain faster
matrix assembly times and more robust simulations. The analytic eigenpairs represent distinct
collision modes, and clarify how filtering certain eigenvalues correspond to discounting specific
responses. We could extend our analysis to vertex-vertex and vertex-edge, mollified energies in
near-parallel, and other degenerate cases, allowing for analytic eigensystems in more hybridized
penalty energies. Potential-based frictional contact [Li et al. 2020] and damping [Brown et al. 2018]
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Fig. 7. Selected frames of a volumetric object collision scene using Ψlq for vertex-face, and Ψuq for edge-edge
collisions. Unfiltered simulation explodes at frame 171 (top), while filtered simulation compresses further to
frame 400 (bottom).

Energy Numeric Ours G-N Numeric/Ours
Vertex-face springs
Signed Length 88.48s 12.31s 11.12s 7.19×

Unsigned Length 83.68s 18.55s 10.93s 4.51×
Edge-edge springs
Signed Length 84.30s 13.01s 12.04s 6.48×

Unsigned Length 86.45s 11.98s 8.78s 7.22×
Hybrid 85.16s 13.52s 12.29s 6.30×

Table 1. Hessian filtering timings for 107 randomized vertex positions. Most energies showed a ∼6× speedup,
and were competitive with the faster but less stable Gauss-Newton (G-N) strategy. All timings are in seconds.

are other interesting directions, since the energies we analyzed only penalize interpenetration, not
relative sliding motion.
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A INVARIANT-BASED ANALYSIS
The unsigned length 𝑢 and signed length 𝑙 of a point translated e2⊥ from the plane whose normal
is in the direction of e0⊥ × e1⊥ are:

𝑙 =
e2⊥ · (e0⊥ × e1⊥)

∥e0⊥ × e1⊥∥
(36)
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𝑢 = ∥e2⊥∥ (37)

A.1 Invariant Formulation
The reduced frame C can be viewed as a deformation gradient for collisions. From this view, we
can rewrite signed and unsigned length, using the anisotropic invariants from Kim et al. [2019]:

𝑙 =
𝐼3√︁

𝐼5 (x̂)𝐼5 (ŷ) − 𝐼6 (x̂, ŷ)2
(38)

𝑢 =
√︁
𝐼5 (ẑ) (39)

where x̂, ŷ, and ẑ form the canonical orthonormal basis, and

𝐼3 = det (C) 𝐼5 (v) = ∥Cv∥2 𝐼6 (u, v) = (Cu) · (Cv) (40)

A.2 Unsigned Length Energies Are Special Cases
The eigenanalysis from Kim et al. [2019] can be applied to any energy of the form Ψ𝑢 (𝐼5 (v))
where v is kept constant. Energies that are functions of only 𝑢 fit these requirements, since
Ψ𝑢 (𝑢) = Ψ𝑢

(√︁
𝐼5 (ẑ)

)
. The eigenpairs of 𝜕2Ψ𝑢

𝜕c2 are then:

𝜆0 = 2
(
𝜕Ψ𝑢
𝜕𝐼5

+ 2𝐼5
𝜕2Ψ𝑢
𝜕𝐼 25

)
v0 =

1
√
𝐼5
Vec

(
Cẑẑ⊤

)
(41)

𝜆1,2 = 2 𝜕Ψ𝑢
𝜕𝐼5

v1,2 ∈ Span
(
v𝑇1 , v𝑇2

)
(42)

For v𝑇1 and v𝑇2 , we use the singular value decomposition C = U𝚺V𝑇 and

T𝑥 =
©«
0 0 0
0 0 1
0 −1 0

ª®¬ T𝑦 =
©«
0 0 −1
0 0 0
1 0 0

ª®¬ T𝑧 =
©«
0 1 0
−1 0 0
0 0 0

ª®¬ (43)

to obtain

v𝑇1 = Vec
(
UT𝑥𝚺V⊤ẑẑ⊤

)
(44)

v𝑇2 = Vec
(
(𝜎𝑦𝑎𝑦UT𝑧 − 𝜎𝑧𝑎𝑧UT𝑦)𝚺V⊤ẑẑ⊤

)
(45)

where 𝜎𝑦,𝑧 are singular values from 𝚺, and 𝑎𝑦,𝑧 are entries of V⊤ẑ.
Rewriting in terms of 𝑢 and C reveals further structure. Observing that 𝑢 =

√
𝐼5 and 𝜕

𝜕𝐼5
= 1

2𝑢
𝜕
𝜕𝑢
,

we have

𝜆0 = 2
(
𝜕Ψ𝑢
𝜕𝐼5

+ 2𝐼5
𝜕2Ψ𝑢
𝜕𝐼 25

)
(46)

=
1
𝑢

𝜕Ψ𝑢
𝜕𝑢

+ 2𝑢 𝜕

𝜕𝑢

(
1
2𝑢

𝜕Ψ𝑢
𝜕𝑢

)
(47)

=
1
𝑢

𝜕Ψ𝑢
𝜕𝑢

+ 2𝑢
(
−1
2𝑢2

𝜕Ψ𝑢
𝜕𝑢

+ 1
2𝑢

𝜕2Ψ𝑢
𝜕𝑢2

)
=

𝜕2Ψ𝑢
𝜕𝑢2 (48)
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Fig. 8. Eigenvectors of Ψ𝑢 : q0 represents compression, while q1,2 represent sliding in the parallel plane.

𝜆1,2 simplify similarly. As for vT1,T2 , the reduced frame consists of orthogonal vectors, so we take V
as the identity, with U and 𝚺 as

U =
(
ê0⊥ ê1⊥ ê2⊥

)
(49)

𝚺 =
©«
∥e0⊥∥ 0 0
0 ∥e1⊥∥ 0
0 0 ∥e2⊥∥

ª®¬ (50)

Plugging these into v𝑇1 and v𝑇2 yields simpler expressions for the eigenpairs of unsigned length
energies:

𝜆0 =
𝜕2Ψ𝑢
𝜕𝑢2 v0 = g𝑢 =

©«
0
0
ê2⊥

ª®¬ (51)

𝜆1,2 =
1
𝑢

𝜕Ψ𝑢
𝜕𝑢

v1,2 ∈ Span
©«

0
0
e0⊥

ª®¬ , ©«
0
0
e1⊥

ª®¬
 (52)

Physically, v0 represents spring compression along the normal, while v1,2 represent buckling in the
orthogonal directions (Fig. 8).
In practice, we only apply Eqns. 51-52 for stiff springs using unsigned length in the vertex-

face collision case, while we use Eqns. 41-42 for the edge-edge case. This is because a simpler
non-orthogonal frame unique to the edge-edge case exists:

Cunsigned ee =
©« e0 e1 eab

ª®¬ (53)

where eab = e2 −𝑎e0 +𝑏e1 is the vector of least distance between e0 and e1, and 𝑎 and 𝑏 are clamped
and taken as constant, matching Kim and Eberle [2022]’s implementation. Using this frame, 𝜕2c

𝜕x2 is
zero, circumventing the need for any extra term considerations.
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A.3 Invariant Analysis Fails for Signed Length
Under invariant analysis, penalty functions of signed length Ψ(𝑙) admit derivatives with respect to
𝐼3, 𝐼5, and 𝐼6. For energy Hessians, this yields the expression

𝜕2Ψ

𝜕c2
=

∑︁
𝑁 ∈S

𝜕Ψ

𝜕𝑁
H𝑁 +

∑︁
𝑁,𝑀∈S

𝜕2Ψ

𝜕𝑀𝜕𝑁
g𝑀g𝑇𝑁 (54)

where S = {𝐼3, 𝐼5 (x̂), 𝐼5 (ŷ), 𝐼6}, H𝑁 = 𝜕2𝑁
𝜕c2 , and g𝑀 = 𝜕𝑁

𝜕c . Prior analysis [Kim et al. 2019] assumed
that 𝜕2Ψ

𝜕𝑀𝜕𝑁
= 0 when𝑀 ≠ 𝑁 . This does not hold for signed length, and every nonzero mixed term

makes a rank-two contribution to overall system.
In some cases, the Bunch-Nielsen-Sorensen formulas [Bunch et al. 1978] can yield analytically

solvable polynomials. In practice, many rank-two mixed terms appear, and repeatedly applying
rank-one updates results in intractably high-degree polynomials. Taking derivatives with respect
to 𝑙 , as we do in §4, yields a clearer path.

B CORRECTIVE TERM SIMPLIFICATIONS
B.1 Gradient Simplifications
Going from Eqn. 14 to 16 involves breaking down 𝜕c

𝜕x into a simplified
(
𝜕c
𝜕x

)
𝑠
and remainder

(
𝜕c
𝜕x

)
Δ

component and observing that 𝜕Ψ
𝜕c lies in the nullspace of

(
𝜕c
𝜕x

)
Δ
.

𝜕Ψ

𝜕x
=

(
𝜕c
𝜕x

)⊤
𝜕Ψ

𝜕c
=

[(
𝜕c
𝜕x

)⊤
𝑠

+
(
𝜕c
𝜕x

)⊤
Δ

]
𝜕Ψ

𝜕c
=

(
𝜕c
𝜕x

)⊤
𝑠

𝜕Ψ

𝜕c
(55)

To see how 𝜕Ψ
𝜕c lies in the nullspace, recall from Eqn. 20 that(

𝜕c
𝜕x

)⊤
Δ

= −
(
0⊤3

𝜕𝛼
𝜕x e

⊤
0

𝜕𝛽

𝜕x e
⊤
0 + 𝜕𝛾

𝜕xe
⊤
1

)
(56)

while the chain rule yields:

𝜕Ψ

𝜕c
=

𝜕Ψ

𝜕𝑙

𝜕𝑙

𝜕c
=

𝜕Ψ

𝜕𝑙

©«
03
03

𝑙
∥e2⊥ ∥ ê2⊥

ª®¬ . (57)

Since e2⊥ is orthogonal to both e0 and e1,
(
𝜕c
𝜕x

)⊤
Δ

𝜕Ψ
𝜕c equals zero and contributes nothing to the

overall gradient.

B.2 Energy Hessian Corrections
To go from Eqn. 15 to 17, we start with:

𝜕2Ψ

𝜕x2
=

(
𝜕c
𝜕x

)⊤
𝜕2Ψ

𝜕c2
𝜕c
𝜕x

+
(
𝜕Ψ

𝜕c

)⊤
: 𝜕

2c
𝜕x2

(58)
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where : is a double contraction. Writing out the Hessian in terms of the simplified and remainder
terms yields

𝜕2Ψ

𝜕x2
=

(
𝜕c
𝜕x

)⊤
𝑠

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
𝑠

+ A1 + A2 (59)

A1 =

(
𝜕c
𝜕x

)⊤
Δ

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
Δ

(60)

A2 =

(
𝜕c
𝜕x

)⊤
Δ

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
𝑠

+
(
𝜕c
𝜕x

)⊤
𝑠

𝜕2Ψ

𝜕c2

(
𝜕c
𝜕x

)
Δ

+ 𝜕Ψ

𝜕c
: 𝜕

2c
𝜕x2

Using Eqn. 3 to substitute 𝜕2Ψ
𝜕c2 and noting that

(
𝜕c
𝜕x

)⊤
Δ
g𝑙 = 012 further reduces A1 and A2:

A1 =
𝜕Ψ

𝜕𝑙

(
𝜕c
𝜕x

)⊤
Δ

H𝑙

(
𝜕c
𝜕x

)
Δ

(61)

A2 =
𝜕Ψ

𝜕𝑙

((
𝜕c
𝜕x

)⊤
Δ

H𝑙

(
𝜕c
𝜕x

)
𝑠

+
(
𝜕c
𝜕x

)⊤
𝑠

H𝑙

(
𝜕c
𝜕x

)
Δ

+ g𝑙 :
𝜕2c
𝜕x2

)
(62)

For one final simplification, we haveA1+A2 = −A1, which allows us to avoid computing the fourth-
order tensor in A2. For signed length energies it turns out that A1 is zero, so directly clamping the
negative eigenvalues in the first term of Eqn. 17 is enough to ensure PSD-ness. For unsigned length,
H𝑢 and g𝑢 take the place of H𝑙 and g𝑙 , resulting in a nonzero A1. The filtering strategy discussed
in the main paper must then be invoked.

It is not immediately obvious why A1 +A2 = −A1 for every case of signed/unsigned length and
vertex-face/edge-edge frame, though it essentially is a result of orthogonality in the underlying
reduced frame. To validate this step, we have implemented Matlab functions that randomize an
initial vertex configuration and independently calculate the left and right side of the equality to
check for correctness (see Simplification_[l/u]_[vf/ee].m).
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