
Into the Portal: Directable Fractal Self-Similarity
Alexa Schor
Yale University

New Haven, CT, USA
alexa.schor@yale.edu

Theodore Kim
Yale University

New Haven, CT, USA
theodore.kim@yale.edu

Figure 1: Four self-similar fractals produced by our method. Left to right: fractal bunny with bunnies stacked on the ear tips;
fractal Hebe recursing atop the bowl in her hand; detailed turbulence in a fractal fox’s infinite tails; a stack of fractal cats.

ABSTRACT
We present a novel, directable method for introducing fractal self-
similarity into arbitrary shapes. Ourmethod allows a user to directly
specify the locations of self-similarities in a Julia set, and is general
enough to reproduce other well-known fractals such as the Koch
snowflake. Ours is the first algorithm to enable this level of general
artistic control while also maintaining the character of the original
fractal shape. We introduce the notion of placing “portals” in the
iteration space of a dynamical system, bridging the aesthetics of
iterated maps with the fine-grained control of iterated function
systems (IFS). Our method is effective in both 2D and 3D.

CCS CONCEPTS
• Computing methodologies→ Computer graphics; Shape
modeling; Parametric curve and surface models.

KEYWORDS
Julia set shape control, Shape Modulus Julia sets, iterated maps

ACM Reference Format:
Alexa Schor and Theodore Kim. 2024. Into the Portal: Directable Fractal Self-
Similarity. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Papers ’24 (SIGGRAPH Conference Papers

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657466

’24), July 27–August 01, 2024, Denver, CO, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3641519.3657466

1 INTRODUCTION
Self-similarity, the reproduction of geometric structures across dif-
ferent scales, is one of the most beguiling features of fractal geome-
try. Its appeal has been leveraged in wide-ranging applications such
as film [Giardina 2017; Hutchins et al. 2015], architecture [Ouyang
et al. 2021], and installation art [Fakharany 2023].

Some fractal algorithms, such as the dynamical maps that pro-
duce the Mandelbrot and Julia sets [Mandelbrot 1982], generate this
property spontaneously. Others, such as iterated function systems
(IFS) [Barnsley 2014], encode this scale invariance directly in their
rules. Previously, controlling self-similarity has always come with
artistic tradeoffs. Explicit IFS encodings enable more user control,
but can generate rigidly symmetric objects that lack a naturalis-
tic appeal [Barnsley et al. 1988; Demko et al. 1985]. In contrast,
the dynamical map approach intrinsically generates a naturalistic
look, but their very spontaneity makes the self-similarity difficult
to control.

We present an analytic method that combines the control of IFS
with the naturalistic look of dynamical maps. We accomplish this
by introducing portals into the dynamical map that allow a user
to explicitly control where self-similarities will occur. Since the
portals live within the dynamical map itself, the characteristically
turbulent and naturalistic look of the final fractal geometry is still
maintained.

While our approach was designed for Julia sets, it is sufficiently
general that it can both reproduce classic fractals such as the Koch

https://orcid.org/0009-0000-3486-5238
https://orcid.org/0000-0002-1131-8685
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3641519.3657466
https://doi.org/10.1145/3641519.3657466

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Alexa Schor and Theodore Kim

Figure 2: Left: A quaternion Julia set with a value of 𝑐 =

(−0.2 + 0.4i − 0.4j − 0.4k). This family of fractals naturally
produces appealingly chaotic details, but self-similarities are
difficult to control. Right: AMenger [1928] sponge, generated
by recursively dividing a cube. The self-similarity is easily
controlled, but the shape lacks the chaotic details of the Julia
set.

[1904] snowflake, and also open the door to chaotic new variants.
We show that portals are effective in both 2D and 3D.

2 BACKGROUND AND RELATEDWORK
The dynamical maps that give rise to Julia sets have been known for
over a century [Fatou 1917; Julia 1918], and their intricate graphical
structures have been studied for over 50 years [Mandelbrot 1980].
One of the most interesting properties of these maps is their self-
similarity: the tendency for global structures to reappear at multiple
scales [Lei 1990]. While initially formulated for the complex (2D)
plane, they were subsequently extended to 3D through the use of
quaternions [Hart et al. 1989; Norton 1982].

Julia set fractals such as the one rendered at left of Figure 2
have a unique aesthetic appeal, but controlling them has been
an ongoing challenge. Lindsey [2014] showed that by carefully
placing the roots of a complex rational, Julia sets could form a fractal
approximation of any 2D shape. Subsequent work [Lindsey and
Younsi 2019] using Fekete polynomials showed that self-similarity
does indeed occur within these shapes. Kim [2015] used a non-
linear optimization to perform fractal approximation in 3D and
[Schor and Kim 2023] devised an analytic form for the same, but
neither work demonstrated that their results were self-similar.

At most, these previous works have generated shapes that are
self-similar, but never provide a method for controlling the size
and location of the self-similarity. Users can zoom through the
fractal until they happen upon a self-similar duplicate, but tuning
the self-similarity to meet external design goals has never been
possible.

Other works in graphics have investigated the generation of
fractal tilings [Fathauer 2005; Ouyang and Fathauer 2014], including
self-similar works inspired by M.C. Escher [Ouyang et al. 2021,
2022]. Generating self-interlocking tiles for “Escherization” [Kaplan
and Salesin 2000] has also received considerable attention [Lin
et al. 2017; Nagata and Imahori 2023]. These formulations focus on
geometric compatibility at a fixed scale, and usually do not attempt
to span different scales.

IFS fractals such as the Menger [1928] sponge (Figure 2, right),
and grammar-based methods [Wonka et al. 2003] such as L-systems
[Prusinkiewicz and Lindenmayer 2012] produce controllable self-
similarity, but tend to have the drawback of generating regular,
rigid-looking structures. Stochastic versions can be used to intro-
duce variety into plant structures, or in the case of architecture
[Merrell 2023], the regularity can be aesthetically desirable. We
instead focus on maintaining the turbulent character of dynamical
maps, while introducing directable self-similarity into their fractal
forms.

3 CREATING SELF-SIMILARITY
In the following, we will denote sets using blackboard S, and their
corresponding indicator functions with an argument S(x) ∈ {0, 1}.
Points in space are denoted with lowercase bold x, and transforma-
tion functions using uppercase bold F(·).

We will first present our portal technique on the simple case of
a Koch [1904] snowflake. Once the basics are established, we will
generalize to iterated dynamical maps like those for Julia [1918]
sets, as well as the recent reformulation of Schor and Kim [2023].

Once the formulation is complete, we will show that we can now
add turbulent details, characteristic of the dynamical map approach,
into our original Koch snowflake example.

3.1 Recursive Set Membership
Let S(x) ∈ {0, 1} be the indicator function for a set S in R2. For
illustrative purposes, in Figure 3 (left) we show a simple triangle,
where black regions denote x ∈ S.

In order to add a self-similarity, we will first select a mask set
M which denotes where in space the self-similarity should appear.
This is shown as the orange shaded region in Figure 3 (middle). We
then specify what other regions should be self-similar by devising a
transformation T(x) that maps each point inM to its corresponding
self-similar point. T(x) is shown with red arrows in Figure 3, and
the blue region shows the image ofM under T(x). In later figures
with multiple distinct orange regions, each is mapped to the blue
region under T(x).

To introduce our desired self-similarity into the set function, we
build SS, a self-similar version of S, where points x ∈ M are first
transformed according to T(x), and then evaluated for membership
in S. The transformation T(x) can be arbitrary as long as it is
defined for all points 𝑥 ∈ M, but to create self-similarity, it should
map onto the geometric structure that the user wants to repeat
inside S. In Figure 3 (middle) we chose T(x) to be a simple scaling
and rotation, mapping the orange region to the blue region. We call
these constructions portals because of the way that they teleport
points from an “input region" to a similarly-shaped “output region".
The indicator function for Figure 3 (middle) SS is then:

SS (x) =
{
S(x) x ∉ M

S(T(x)) x ∈ M.
(1)

This function only makes a single copy of the original triangle
and yields a relatively pedestrian two-triangle shape. However,
recursive self-similarity can be obtained if we allow this indicator

Into the Portal: Directable Fractal Self-Similarity SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Figure 3: Left: the base setM. Center: evaluating Equation 1
produces a single scaled, rotated copy of the base set. Right:
evaluating Equation 2 produces nested self-similar copies.
At center and right, arrows show the path of points under
transformation x→ T(x)

Figure 4: Left: A fractal using a hexagram base set and six por-
tals placed around it. Red arrows show the transformation T.
Right: Evaluating Ssim as described in Equation 2 reproduces
the classic Koch [1904] snowflake.

function to recurse on itself:

SS (x) =
{
S(x) x ∉ M

SS (T(x)) x ∈ M
. (2)

By allowing T(x) to recursively transform some points under itera-
tion, self-similarity across scales emerges and one limb of the Koch
snowflake is generated in Figure 3 (right). A recursive operation
is achieved whenever some points T(x) for x ∈ M are themselves
members ofM. There may exist some points x for which the recur-
sion SS (x) does not terminate. While under the above definition
set membership is undefined for these points, for consistency with
Julia set computation (see §3.2) we consider these to be members of
the overall set SS. However, the self-similarities we describe appear
regardless of our treatment of such points.

Our formulation does not restrictM to a single contiguous region,
and T(x) can be chosen arbitrarily, so the full snowflake can be
constructed by placing multiple portals at the same scale (Figure
4, left) and assigning an appropriate T(x) that maps each orange
portal to the same blue shaded region.

We now have a dynamical map that allows us to directly specify
self-similar regions. However, it currently only yields the rigid-
looking results commonly found in shapes produced by iterated
function systems (IFS) [Barnsley 2014], which is reflected in the fact
that we have only used T(x) that correspond to affine transforms
or piecewise combinations of the same.

3.2 Adding Portals to Julia Sets
We aim to introduce equivalent self-similarity controls into the
chaotic, naturalistic forms generated by dynamical system fractals.
To achieve this, we will now examine how to apply our approach
to Julia sets. We start with an overview of Julia sets before showing
how their computation naturally supports portals.

Filled Julia sets are all the points x ∈ Cwhosemagnitudes remain
bounded under the recursive evaluation of some transformation
F(x) : C → C. We can express 𝑛 recursive applications of F(x)
using a subscript 𝑛, such that F𝑛 (x) denotes

F1 (x) = F(x) F2 (x) = F(F(x))
F3 (x) = F(F(F(x))) F4 (x) = F(F(F(F(x)))) . . .

The filled Julia set J can then be is defined as

J =
{
x : lim

𝑛→∞
∥F𝑛 (x)∥ ̸→ ∞

}
,

where ∥ · ∥ denotes magnitude, also known as the modulus. If the
point x does not escape to∞ after many iterations, then x ∈ J. In
practice,𝑛 is bounded to some large number of iterations (∼100), and
instead of checking whether the magnitude has grown to infinity,
some finite radius is used [Sanders and Kandrot 2010]. Algorithm 1
shows this approach for computing set membership.

ALGORITHM 1: Determine if x is inside the Julia set of a map F

Function IsInsideJuliaSet(x, F)
𝑖 ← 0
while | |x | | < MaxRadius and 𝑖 < MaxIterations do

x← F(x)
𝑖 ← 𝑖 + 1

end
if 𝑖 == MaxIterations then return true
return false

Julia sets were originally computed on the complex numbers,
where x ∈ C and F : C → C, but this same computation can
be performed in any space. The most common choice of F is the
quadratic map F(x) = x2 + c, where c is an arbitrary constant that
determines the global shape of the Julia set [Mandelbrot 1982]. For
2D Julia sets this is conducted on C, while for most 3D Julia sets
iteration is conducted on the quaternions H with a 3D slice then
extracted, as in Figure 2, left. Despite the popularity of the quadratic
form, any map F(x) can be used, so we will design our own now in
R2 and R3.

Unlike with our Koch snowflake S, the definition of the Julia
set J is already recursive. Therefore, instead of usingM and T(x)
to define a new recursive indicator function SS (Eqn. 2), we can
instead introduce portals directly into the F(x) map:

FF (x) =
{
F(x) x ∉ M

T(x) x ∈ M
(3)

Under Julia set iteration, the set membership of any point x can
be determined by any point F𝑛 (x) along its iteration without any
knowledge of its prior iterates. Because of this, mapping the itera-
tion of one point (x) to another (y) will ensure an equivalence of set
membership: (F𝑛 (x) = y) =⇒ (J(x) = J(y)), as illustrated in Fig-
ure 5 Adding portals to a dynamical map creates the left-hand-side

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Alexa Schor and Theodore Kim

of the conditional. User-specified components are then repeated,
just as portions of the indicator function were duplicated in Section
3.1. This occurs infinitely, without any additional modifications, as
Julia set computations are intrinsically recursive.

Thus, introducing portals into the dynamical map keeps their
characteristic chaotic details intact, but also adds a level of control
over self-similarity that is more reminiscent of an IFS. Figure 6
shows our technique applied to the “rabbit” Julia set of Douady et al.
[1984]. The overall shape and chaotic details remain intact, but new
self-similarities have been added where desired. This operation
also reveals regions of self-similarity embedded in the original
dynamical map, as new copies of the “rabbit” spontaneously appear
in regions that were not directly specified by our portals, but that
map into our portals under some F𝑛 (x).

3.3 Extension to 3D Shape Modulus
Formulation

The preceding examination of Julia sets was for the 2D complex
plane (F(x) : C→ C), and the most common extension to 3D is to
perform similar computations over 4D quaternions (F(x) : H→ H
[Norton 1982]) and extract a 3D slice. To add self-similarity, the
portal computation in Equation 3 can be carried over directly to
Julia sets in any dimension.

However, both the complex and quaternion dynamical maps
have a known limitation: they are notoriously difficult to control.
While our portals can be used to introduce self-similarity into any
portion of them, persuading them to generate the desired “base case”
shape to repeat, such as a fractal version of the original triangle in
Figure 3, is very difficult. Analytic methods exist in 2D [Lindsey
and Younsi 2019], but only numerical methods are known in 3D
[Kim 2015].

Fortunately, a recently proposed shape modulus approach [Schor
and Kim 2023] both introduces better user controls into these dy-
namical maps, and fits naturally into our portal formulation. In that
approach, an original quaternion dynamical map is first decom-
posed into modulus (R(x) ∈ R) and versor (D(x) ∈ R3) components,
otherwise known as magnitude and direction

R(x) = ∥F(x)∥ D(x) = F(x)
∥F(x)∥ . (4)

The R(x) is then replaced with an alternative R̂(x) that explicitly
incorporates the signed distance field 𝜙 (x) of a desired shape:

R̂(x) = 𝑒𝛼 (𝜙 (x)+𝛽) D(x) = F(x)
∥F(x)∥ . (5)

The 𝛼 and 𝛽 constants are “thinness” and ”offset” control variables
[Schor and Kim 2023]. The dynamical map then becomes F̂(x) =
R̂(x)D(x) in lieu of the original F(x).

The portal transform can then be applied:

F̂F (x) =
{
F̂(x) x ∉ M

T(x) x ∈ M
. (6)

This formulation enables considerable flexibility: all the control
parameters from the shape modulus approach are inherited by
our portals. Additionally, because the shape modulus formulation
decouples 3D Julia set computation from quaternion polynomial
evaluation, we are able to conduct iteration in R3.

Figure 5: Top: A zoomed view of a 2D cat-shaped Julia set J(𝑓),
with transformation 𝑓 (·) shown with colored arrows. Two
different points, x and y, map to the same point, 𝑓 (x) = 𝑓 (y).
Bottom: under Julia set computation, all subsequent itera-
tions and eventual set membership of the two iterates be-
come thereafter identical. This property of Julia sets is what
allows the portal mechanism described in §3.2 to produce
self-similarities.

Into the Portal: Directable Fractal Self-Similarity SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Figure 6: Left: the “rabbit” Julia set of Douady et al. [1984],
with mask shown in blue and portals in orange, similar to
Fig. 4. Right: The rabbit with our new self-similarities added.

Figure 7: Left: The Koch [1904] snowflake, reproduced using
Eqn. 6, the portal placements fromFig. 4, and a large𝛼 . Center
and right: the modulus (magnitude) and versor (direction)
fields.

One of the hallmarks of dynamical maps is quasi self-similarity
[Järvi 1997], where repeating structures are never quite exact copies
of the original. We can precisely control the level of quasi self-
similarity by distorting T, or, alternatively, by introducing a scalar
blend factor B(x) ∈ R into the application of T(x):

F̂F (x) =
{
F̂(x) x ∉ M

B(x) · T(x) + (1 − B(x)) · F̂(x) x ∈ M
. (7)

For B(x) = 1, we recover Eqn. 6, and B(x) = 0 produces the
original base Julia set without portals. By spatially varying B(x), a
smooth transition between portal and non-portal regions can be
achieved. For the 2D and 3D examples, a B(x) was chosen that
slightly feathered the edges of the mask set.

Putting everything together, we can now generate a “turbulent”
version of the Koch snowflake [Fincher 1999]. By setting 𝛼 to be
large, we first reproduce the original snowflake (Fig. 7). If we then
lower 𝛼 and set the surrounding versor field according to the gradi-
ent of a noise function (e.g. Perlin [1985]), we can gradually intro-
duce the chaotic details characteristic of Julia sets (Fig. 8). For this
example, we setM as the set difference of circular portal regions
and the base Julia set, ensuring that the self-similar fractal detail
functions as an additive operation onto the base Julia set.

4 RESULTS
We have applied our algorithm to a variety of examples in both 2D
and 3D. As much of the visual appeal of Julia sets appears in 2D,
we have applied portals to a pair of 2D examples.

Figure 8: Left: A “turbulent” Koch [1904] snowflake gener-
ated by lowering the 𝛼 in Eqn. 5. Right: The modulus (top)
and versor (bottom) fields.

In Figure 9, in a nod to the mythical nine-tailed fox, we have
added a portal that generates an ∞-tailed fox. The algorithm is
quite efficient, and the shape only takes 30 seconds to compute on
a single-core machine (Table 1). Similar to the Koch snowflake, by
adjusting the 𝛼 parameter, gradually more turbulent versions of the
fox can be generated (Figure 9, right). Zooming in reveals intricate
details that we did not originally specify, such a spontaneously
generated quasi self-similar marbling pattern (Figure 11, left).

In Figure 10, in a nod to “turtles all the way down” [Hawking
2009], we have introduced a portal into the cat model from Lindsey
[2014] and generated “cats all the way down”. Like the fox model,
the computation is quite efficient and completes in slightly more
than 30 seconds (Table 1). We again are able to introduce turbulence
into the shape by adjusting 𝛼 . The intricate details that appear
when zooming in to the portal are shown on the right of Figure 11.
Similar to the spontaneous self-similarites that appear in Lindsey
and Younsi [2019], we found that zooming into the cat revealed
spontaneous copies of the cat’s head, even in regions that we did
not indicate with our portals. This phenomenon is similar to Figure
6, where the portals induced new copies of the Douady et al. [1984]
“rabbit” to appear throughout space.

Turning to 3D, we generate a self-similar version of aHebe garden
statue by placing a portal on the bowl that the statue holds (Figure
13). We again generate a turbulent version of the model by adjusting
both the 𝛼 and 𝛽 parameters. The resultant geometry is extremely
intricate, so we use non-linear marching cubes [Kim 2015] to extract
it. While the final model is quite large and complex (∼30 million
triangles), the natural parallelism of marching cubes allowed us to
compute the model in just over 3 minutes. For all 3D examples, the
marching cubes domain was divided into a perfect octree of 512
tiles and then processed in parallel on Intel Xeon cores with clock
speeds between 2 and 2.9 GHz.

In Figure 12, we introduce multiple portals onto the bunny’s ears
in order to generate “bunnies all the way down”. This is the most
intricate 3D model we attempted, which yielded over 300 million

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Alexa Schor and Theodore Kim

Figure 9: An∞-tailed fox. From left to right: The original (target) fox shape; The shape modulus base fractal with a high 𝛼 value
and location of portals illustrated; The fractal with evaluated those portals present; The fractal evaluated with a lower 𝛼 value,
increasing turbulent detail.

Figure 10: Cats all the way down. From left to right: The original cat shape; The shape modulus base fractal with a high 𝛼 value
and location of portals illustrated; The fractal evaluated with those portals present; The fractal evaluated with a lower 𝛼 value,
increasing turbulent detail.

Figure 11: Left: detailed infinite tails from Figure 9. Center: detailed infinite cats from Figure 10. Orange boxes show spontaneous
copies of the cat’s head. Right: Spontaneous copies arise when iterates coherently map to larger-scale features. The smaller
heads map back to the large, original head under iteration.

Into the Portal: Directable Fractal Self-Similarity SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA

Table 1: 2D and 3D Performance. For all 3D examples, triangles were computed using marching cubes on a grid resolution of
24003. For all 2D examples, a uniform sampling of 16002 was used. 3D jobs were divided spatially, so each computed varying
amounts of geometry. Thus, wall-clock time differs slightly from total time divided by the number of cores. All times are in
hours:minutes:seconds.

Fig. Example Dimension 𝛼 𝛽 Portals Triangles CPU time Cores Wall-clock time
7 Snowflake (low 𝛼) 2D 36 -0.7 3 - 00:00:42 1 00:00:42
8 Snowflake (high 𝛼) 2D 300 -0.7 3 - 00:00:37 1 00:00:37
9 Fox (low 𝛼) 2D 35 -0.70 1 - 00:00:30 1 00:00:30
9 Fox (high 𝛼) 2D 300 0.85 1 - 00:00:30 1 00:00:30
10 Cat (low 𝛼) 2D 38 -0.75 1 - 00:00:36 1 00:00:36
10 Cat (high 𝛼) 2D 300 -0.75 1 - 00:00:37 1 00:00:37
13 Hebe (high 𝛼) 3D 0.4 5.8 1 13.5M 6:12:03 512 00:02:39
13 Hebe (low 𝛼) 3D 0.27 8.2 1 17.75M 5:49:21 512 00:03:09
12 Bunny 3D 10 0.10 2 339M 66:57:09 512 00:14:57

triangles. As the computation remains trivially parallelizeable, the
geometry was extracted in less than 15 minutes.

5 FUTUREWORK
We have shown how to introduce arbitrary self-similarities into
dynamical map fractals by introducing the concept of portals. Cur-
rently, we have only explored a simple set of transformations for
these portals, such as affine transforms or affine blended with noise
gradients. While these already generate self-similarity, further in-
vestigation is needed to determine what new shapes can be gener-
ated by more sophisticated transforms.

Our portal-based strategy for inducing self-similarities is effec-
tive on Julia sets and for any other system where the property from
Figure 3 holds. However, this also means our method cannot be
directly applied to systems such as the Mandelbrot set. Different
techniques may be required to enable artistic self-similarities in
different scenarios.

Currently, portals are placed by hand. While this provides a con-
siderable amount of control to the user, it is not difficult to imagine
a different workflow where the self-similarities are automatically
placed by detecting the regions of the base shape that would form
visually pleasing recursions. However, such a detection algorithm
remains future work.

Finally, we have found that the 3D shapes generated by our
algorithm can contain more details than the underlying non-linear
marching cubes algorithm is able to resolve. This is true of most
fractal shapes by their very fractal nature, but especially relevant
here when introducing self-similarities across scales.We have found
that a dual contouring approach [Ju et al. 2002] does not produce
improved results, as the surface normals change very rapidly in
the regions with the richest fractal detail. A robust, fractal-aware
meshing algorithm remains future work.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their valuable
feedback and for taking a chance on an offbeat topic. This work
was supported by Adobe and the Teng and Han Family Fund.

REFERENCES
Michael Barnsley. 2014. Fractals everywhere (2nd ed.). Academic Press.

Michael F Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie Reuter, and Alan D
Sloan. 1988. Harnessing chaos for image synthesis. In Proceedings of SIGGRAPH.
131–140.

Stephen Demko, Laurie Hodges, and Bruce Naylor. 1985. Construction of Fractal
Objects with Iterated Function Systems. In Proceedings of SIGGRAPH. 271–278.

Adrien Douady, John Hamal Hubbard, and Pierre Lavaurs. 1984. Etude dynamique
des polynômes complexes. Université de Paris-Sud, Dép. de Mathématique Orsay,
France.

Nour Fakharany. 2023. Jim Denevan’s Monumental Land Art Debutes in Abu Dhabi.
ArchDaily (Nov. 2023).

Robert W Fathauer. 2005. Fractal tilings based on dissections of polyhexes. In Proceed-
ings of Bridges. 427–434.

Pierre Fatou. 1917. Sur les substitutions rationnelles. Comptes Rendus de l’Académie
des Sciences de Paris 164 (1917), 806–808.

David Fincher. 1999. Fight Club.
Carolyn Giardina. 2017. ‘Guardians of the Galaxy Vol. 2’: A Digital Kurt Russell and

Other VFX Tricks Revealed. The Hollywood Reporter (May 2017).
John C Hart, Daniel J Sandin, and Louis H Kauffman. 1989. Ray tracing deterministic

3-D fractals. In Proceedings of SIGGRAPH. 289–296.
Stephen Hawking. 2009. A brief history of time: from big bang to black holes. Random

House.
David Hutchins, Olun Riley, Jesse Erickson, Alexey Stomakhin, Ralf Habel, and Michael

Kaschalk. 2015. Big Hero 6: into the portal. In SIGGRAPH Talks. 1–1.
Pentti Järvi. 1997. Not all Julia sets are quasi-self-similar. Proc. Amer. Math. Soc. 125, 3

(1997), 835–838.
Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. 2002. Dual contouring of

hermite data. In Proceedings of SIGGRAPH. 339–346.
Gaston Julia. 1918. Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures

Appl. 8 (1918), 47–245.
Craig S. Kaplan and David H. Salesin. 2000. Escherization. In Proceedings of SIGGRAPH.

499–510.
Theodore Kim. 2015. Quaternion Julia Set Shape Optimization. In Proceedings of the

Eurographics Symposium on Geometry Processing. 167–176.
HV Koch. 1904. Sur une courbe continue sans tangente, obtenue par une construction

géométrique élémentaire. Arkiv for Matematik, Astronomi och Fysik 1 (1904), 681–
704.

Tan Lei. 1990. Similarity between the Mandelbrot set and Julia sets. Communications
in mathematical physics 134 (1990), 587–617.

Shih-Syun Lin, Charles CMorace, Chao-Hung Lin, Li-FongHsu, and Tong-Yee Lee. 2017.
Generation of escher arts with dual perception. IEEE transactions on visualization
and computer graphics 24, 2 (2017), 1103–1113.

Kathryn Lindsey and Malik Younsi. 2019. Fekete polynomials and shapes of Julia sets.
Trans. Amer. Math. Soc. 371, 12 (2019), 8489–8511.

Kathryn A. Lindsey. 2014. Shapes of polynomial Julia sets. Ergodic Theory and
Dynamical Systems 35, 6 (Aug 2014), 1913–1924. https://doi.org/10.1017/etds.2014.8

Benoit B Mandelbrot. 1980. Fractal aspects of the iteration of z→ Λz (1-z) for complex
Λ and z. Annals of the New York Academy of Sciences 357, 1 (1980), 249–259.

Benoit B Mandelbrot. 1982. The fractal geometry of nature. Vol. 1. WH Freeman.
Karl Menger. 1928. Dimensionstheorie: Karl Menger. Springer.
Paul Merrell. 2023. Example-Based Procedural Modeling Using Graph Grammars.

ACM Trans. Graph. 42, 4, Article 60 (jul 2023), 16 pages.
Yuichi Nagata and Shinji Imahori. 2023. Creation of Dihedral Escher-like Tilings Based

on As-Rigid-As-Possible Deformation. ACM Trans. Graph. (dec 2023).
Alan Norton. 1982. Generation and display of geometric fractals in 3-D. ACM SIG-

GRAPH Computer Graphics 16, 3 (July 1982), 61–67.

https://doi.org/10.1017/etds.2014.8

SIGGRAPH Conference Papers ’24, July 27–August 01, 2024, Denver, CO, USA Alexa Schor and Theodore Kim

Peichang Ouyang, Kwok Wai Chung, Alain Nicolas, and Krzysztof Gdawiec. 2021.
Self-Similar Fractal Drawings Inspired by M. C. Escher’s Print Square Limit. ACM
Trans. Graph. 40, 3, Article 31 (jul 2021), 34 pages.

Peichang Ouyang and Robert W Fathauer. 2014. Beautiful math, part 2: aesthetic
patterns based on fractal tilings. IEEE Computer Graphics and applications 34, 1
(2014), 68–76.

Peichang Ouyang, Krzysztof Gdawiec, Alain Nicolas, David Bailey, and Kwok Wai
Chung. 2022. Interlocking Spiral Drawings Inspired by M. C. Escher’s Print
Whirlpools. ACM Trans. Graph. 42, 2, Article 18 (nov 2022), 17 pages.

Ken Perlin. 1985. An image synthesizer. Proceedings of SIGGRAPH 19, 3 (1985), 287–296.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 2012. The algorithmic beauty of
plants. Springer Science & Business Media.

Jason Sanders and Edward Kandrot. 2010. CUDA by example: an introduction to general-
purpose GPU programming. Addison-Wesley Professional.

Alexa Schor and Theodore Kim. 2023. A Shape Modulus for Fractal Geometry Gen-
eration. In Proceedings of the Eurographics Symposium on Geometry Processing.
9 pages.

Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003. Instant
Architecture. ACM Trans. Graph. 22, 3 (jul 2003), 669–677.

Figure 12: Bunnies All the Way Down. Left to right: The original bunny mesh; a self-similar fractal using our technique, where
portals are inserted at each ear tip; a zoomed-in view of the self-similar region in the portal on one ear; a zoomed view of the
turbulent details on along the bunny’s body.

Figure 13: Fractal Hebe. Left to right: the original Hebe mesh; a self-similar fractal using our technique with a high value of 𝛼
yields a light amount of fractal detail; reducing 𝛼 increases the turbulent fractal detail; a zoomed view of the self-similar region
inside the portal; a zoomed-in view of the intricate detail that appears near the statue’s base.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Creating Self-Similarity
	3.1 Recursive Set Membership
	3.2 Adding Portals to Julia Sets
	3.3 Extension to 3D Shape Modulus Formulation

	4 Results
	5 Future Work
	Acknowledgments
	References

