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Finite Difference Advection 	
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Optimizing Cubature for Efficient Integration of 
Subspace Deformations [An et al.] 2008	





The Cubature Approach	
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The Cubature Approach	



64 x 48 x 64	



Six days!	
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Non-Negative Least Squares	
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The Greedy Algorithm	





Lawson-Hanson NNLS solve:	



Greedy search for P cubature points:	
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Six days	

 30 minutes	





Example 1	

 Example 2	

 Example 3	

 Example 4	



L2 error, 
Iteration 1	



0.0428803	

 0.0592719	

 0.0409149	

 0.0330917	



L2 error, 
Iteration 2	



0.0148716	

 0.0184463	

 0.0145316	

 0.0118481	



L2 error, 
Iteration 3	



0.0107379	

 0.0112989	

 0.0106133	

 0.00650847	



L2 error, 
Iteration 4	



0.00866083	

 0.00865156	

 0.00871744	

 converged	



Total Time	

 01h 18m 07s	

 03h 05m 58s	

 09h 28m 29s	

 05h 29m 02s	





Greedy search for P cubature points:	



Importance sampled cubature: 	



O(P4 )

O(P3)



[Harmon and Zorin 2013]	
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Internal Obstacles	





Iterated Orthogonal Projection	


[Molemaker et al. 2008]	





Iterated Orthogonal Projection	


[Molemaker et al. 2008]	
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Iterated Orthogonal Projection	


[Molemaker et al. 2008]	
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Stam Plume, 200×266×200	


06h 57m 30s	







Stam Plume example	



Solver Only: 	

 	

 	

 	

 	

18ms 	

9326x faster	



With Vel. Recon.: 	

 	

 	

4.2s 	

 	

39x faster	



Total preprocessing: 	

 	

09h 50m 23s	



12-core, 2.66 Ghz Mac Pro	







MacCormack example	



Solver Only: 	

 	

 	

 	

 	

96ms 	

1764x faster	



With Vel. Recon.: 	

 	

 	

5.6s 	

 	

30x faster	



Total preprocessing: 	

 	

09h 27m 16s	





Dirichlet obstacles, 276 x 276 x 138	


03h 35m 00s	







Dirichlet example	



Solver Only: 	

 	

 	

 	

 	

130ms 	

 	

661x faster	



With Vel. Recon.: 	

 	

 	

5.1s 	

 	

 	

17x faster	



Total preprocessing: 	

 	

19h 00m 58s	





Neumann obstacles, 175 x 175 x 350	


03h 27m 30s	





Vorticity confinement = 20, originally 1.5	





Neumann example	



Solver Only: 	

 	

 	

 	

 	

34ms 	

 	

2435x faster	



With Vel. Recon.: 	

 	

 	

5.7s 	

 	

 	

14x faster	



Total preprocessing: 	

 	

18h 53m 55s	





Outline	



•  Previous Work	


•  Subspace Basics	



•  The Cubature Approach	



•  Other Features	



•  Results	



•  Discussion and Conclusions	





Contributions	



•  Fast re-simulation of an existing simulation	


•  A cubature approach to subspace advection	



•  Practical cubature training via importance 
sampling	



•  Internal obstacles via subspace iterated 
orthogonal projection	





Limitations	



•  Memory intensive (Mac Pro had 96 GB)	


•  Time-consuming pre-process	



•  How well does it generalize?	





Future Work	



•  Basis enrichment (XFEM?)	



•  Better basis compression 	


	

(HSS?)	



•  Liquid re-simulation?	


[Seo et al. 2011]	



[Richardson et al. 2011]	
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