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200 x 266 x 200 simulation, 7 hours 2 minutes




Original MacCormack Simulation Vorticity Confinement
set to zero
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Fluid Simulation

[ Foster and Metaxas 1997] [Stam 1999]

Semi-Lagrangian Advection
Implicit Integration




Vortex Mgthods

[Brochu et al. 2012]
[ Pfaff et al. 2012]

Viscosity Methods
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[ Mullen et al. 2009]

Adaptive Methods

[Losasso et al. 2004]
[Ando et al. 2013]

Turbulence Methods

[Kim et al. 2008]
[Schechter and Bridson 2008]
[Narain et al. 2008]




Subspace Methods

weRNwe

[Barbic and James 2005]

[Pentland and Williams 1989]

H d Zorin 2013
[Kim and James 2011] [Harmon and Zorin ]




Subspace Methods

[ Treuille et al. 2006]
[Wicke et al. 2009]
[Stanton et al. 2013]




[Treuille et al. 2006]
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Dittusion
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Stable Fluids

* Diffusion 2,&
=

* Projection f,s,
* Advection 777




Semi-Lagrangian
Diffusion Advection




Semi-Lagrangian
Diffusion Advection




Finite Difference Advection

[ Treuille et al. 2006]




Finite Difference Advection

[ Treuille et al. 2006]




TV

not Semi-Lagrangian

Finite differences,

Exponential,

not 1mplicit




Semi-Lagrangian
Advection




Semi-Lagrangian
Advection

[Stanton et al. 2013]

Enables ~ and




Semi-Lagrangian Finite Difference
Advection Advection
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Optimizing Cubature for Efficient Integration of
Subspace Deformations [ An et al.] 2008
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The Cubature Approach




The Cubature Approach
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The Cubature Approach
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The Cubature Approach
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The Cubature Approach

I(x)




The Cubature Approach

f(x)=A(un)




The Cubature Approach

64 x 48 x 64




The Cubature Approach

64 x 48 x 64

Six days!




The Greedy Algorithm




The Greedy Algorithm
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The Greedy Algorithm




The Greedy Algorithm




The Greedy Algorithm
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Non-Negative Least Squares
;




The Greedy Algorithm




Lawson-Hanson NNLS solve: O(P°)

Greedy search for P cubature points: O(P )
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Fig. 11a. Distribution pattern of jittered Fig. 11b. Fourier transform of the pattern in
samples. Figure 11a.

[ Cook 1986]
[ Pharr and Humphreys 2010]

... many others




[Importance Sampling

5 M




[Importance Sampling




[Importance Sampling




[Importance Sampling
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Six days - 30 minutes




Example 1

Example 2

Example 3

Example 4

L, error,
[teration 1

L, error,

Iteration 2

L, error,

Iteration 3

L, error,
[teration 4

0.0428803

0.0692719

0.0409149

0.0330917

0.0148716

0.0184463

0.0145316

0.0118481

0.0107379

0.0112989

0.0106133

0.00650847

0.00866083

0.008651566

0.00871744

converged

Total Time




Greedy search for P cubature points: O(P 4)

Importance sampled cubature: O(P 3)




[Harmon and Zorin 2013]
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Fast Diffusion-Projection




Fast Diffusion-Projection

]. Diffusion

Projection




Fast Diffusion-Projection




Internal Obstacles




[terated Orthogonal Projection

[ Molemaker et al. 2008]




[terated Orthogonal Projection

[ Molemaker et al. 2008]




[terated Orthogonal Projection

[ Molemaker et al. 2008]
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Stam Plume, 200x266x200
06h 57m 30s




Original Semi-Lagrangian Simulation Buoyancy Constant Halved




Stam Plume example

Solver Only: 18ms 9326x faster
With Vel. Recon.: 4.2s 39x ftaster

Total preprocessing: 09h 50m 23s

12-core, 2.66 Ghz Mac Pro







MacCormack example

Solver Only: O6ms 1764x ftaster
With Vel. Recon.: 5.6s 30x faster

Total preprocessing: 09h 27m 16s




Dirichlet obstacles, 276 x 276 x 138
03h 35m 00s




Subspace re-simulation,
Vorticity Confinement

set to zer(.




Dirichlet example

Solver Only: 130ms 661x faster
With Vel. Recon.: 5.1s 17x faster

Total preprocessing: 19h 00m 58s




Neumann obstacles, 175 x 175 x 350
03h 27m 30s




Vorticity confinement = 20, originally 1.5




Neumann example

Solver Only: 34ms 2435x taster
With Vel. Recon.: WA 14x ftaster

Total preprocessing: 18h 53m 555
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Contributions

Fast re-sumulation of an existing simulation

A cubature approach to subspace advection

Practical cubature training via importance
sampling
Internal obstacles via subspace terated

orthogonal projection




[mitations

* Memory intensive (Mac Pro had 96 GB)

* Time-consuming pre-process

* How well does 1t generalize?




Future Work

* Basis enrichment (XFEM?)

. . [Richardson et al. 2011]
* Better basis compression

(HSS?)

H . B,
. . . . [Seo et al. 2011]
¢ quUld re'Slmulatlon?
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MacCormack, Vorticity Confinement = 6
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