
Spiral-Spectral Fluid Simulation

QIAODONG CUI, Yale University, U.S.A
TIMOTHY LANGLOIS, Adobe Research, U.S.A
PRADEEP SEN, University of California, Santa Barbara, U.S.A
THEODORE KIM, Yale University, U.S.A

Fig. 1. Our spiral-spectral approach enables fluid simulations over variety of radial domains, and including both surfaces and volumes.

We introduce a fast, expressive method for simulating fluids over radial

domains, including discs, spheres, cylinders, ellipses, spheroids, and tori. We

do this by generalizing the spectral approach of Laplacian Eigenfunctions,

resulting in what we call spiral-spectral fluid simulations. Starting with a set

of divergence-free analytical bases for polar and spherical coordinates, we

show that their singularities can be removed by introducing a set of carefully

selected enrichment functions. Orthogonality is established at minimal cost,

viscosity is supported analytically, and we specifically design basis functions

that support scalable FFT-based reconstructions. Additionally, we present

an efficient way of computing all the necessary advection tensors. Our
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approach applies to both three-dimensional flows as well as their surface-

based, codimensional variants. We establish the completeness of our basis

representation, and compare against a variety of existing solvers.
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1 INTRODUCTION
Many interesting fluid phenomena exist on radial domains. Soap

bubbles [Hill and Henderson 2016; Huang et al. 2020; Yang et al.

2019] and planetary flows [Stam 2003; Yaeger et al. 1986] are often

approximated as two-dimensional flows on the surface of a sphere.

Cylindrical twisters [Fangmeier 1996], tornadoes [Hall 2004; Yuksel

et al. 2012], and mushroom clouds [Rasmussen et al. 2003] are com-

monplace in Hollywood disaster movies. Spherical vortex particles
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[Selle et al. 2005], turbulence particles [Narain et al. 2008], and vor-

ticles [Angelidis 2017; Park and Kim 2005] are used to both simulate

new flows and enrich existing ones.

We present a fluid-simulation approach that applies to a wide vari-

ety of such domains and conforms exactly to their curved boundaries.

We demonstrate its efficacy on discs, spheres, ellipses, spheroids,

cylinders, and tori. Our approach is an analytic generalization of the

method of Laplacian Eigenfunctions [De Witt et al. 2012] (a.k.a. the

Eigenfluids method), which uses the eigenfunctions of the vector

Laplacian as its basis. The Eigenfluids method can simulate fully

inviscid flows because it formulates advection entirely within the

spectral domain. We correspondingly refer to our new simulations

as spiral-spectral fluids, due to their fully spectral and radial nature.

The original Eigenfluids approach [DeWitt et al. 2012] only scaled

to several hundred basis functions, resulting in relatively coarse

flows. Cui et al. [2018] showed that by leveraging analytic basis

functions and the Fast Fourier Transform (FFT), scalability could be

asymptotically improved, which allowed tens of thousands of basis

functions to be used, and yielded turbulent, highly detailed flows.

Following this approach, we start from the divergence operator

and design a set of vector basis functions over radial domains that

support FFT-based reconstructions by design. Thus, our approach

is also able to efficiently achieve similarly detailed simulations that

use over ten thousand basis functions.

However, radial functions are known to contain troublesome pole
singularities. For example, with surface-based flows on a sphere,

point singularities appear at the north and south poles. In a fully

volumetric sphere, these expand into a line connecting the poles.

Consequently, previous work [Hill and Henderson 2016; Huang et al.

2020; Yang et al. 2019] required specialized advection schemes to

address this issue.

We instead leverage the spectral nature of our approach and intro-

duce a set of enrichment functions that are capable of handling both

point and line singularities. While the spiral basis functions support

fast transformations, they do not qualify as orthogonal eigenfunc-

tions. Thus, we present a simple method for re-establishing orthog-

onality, and an efficient transform that allows us to still use the

advection tensor of the original coordinate system. Additionally, we

show that the diffusion operator, which had an analytic form in the

original Eigenfluids formulation, retains this appealing form over

radial domains. Our orthogonalization approach applies equally

well to this operation.

Finally, we conclude by establishing the completeness of our basis,

and demonstrating the efficacy of our approach across a variety

of examples. In particular, we compare against modern spherical

spectral methods [Burns et al. 2020; Lecoanet et al. 2019], as well

as standard fluid solvers in graphics [Thuerey and Pfaff 2018]. In

summary, our contributions are:

• A method for generating divergence-free principal basis func-
tions over radial domains that intrinsically support FFT-based

reconstructions

• Enrichment functions that remove the singularities that arise

in the principal functions, while still supporting the FFT

• A spectral advection formulation for radial domains, as well

as a fast method for applying it to orthogonalized principal

and enrichment functions

• Analytic reduced-order diffusion over radial domains

• Demonstrated efficacy over a variety of geometries, including

surface-based flows on spheres and tori, and volumetric flows

over spheres, spheroids, tori, and cylinders

2 RELATED WORK
The most common representations for fluid simulations in com-

puter graphics are finite differences over an Eulerian grid [Stam

1999], basis functions attached to Lagrangian particles [Müller et al.

2003], or a combination of both, such as in a Fluid Implicit Particle

(FLIP) [Zhu and Bridson 2005] or Material Point Method (MPM)

[Stomakhin et al. 2013] scheme. Excellent texts are available that

summarize both approaches [Bridson 2015; Kim 2017].

In contrast, radial coordinate systems can be the most natural

coordinate system for many applications, and various methods have

been developed for these domains over the last few decades. Early

on, Yaeger et al. [1986] used a surface-based spherical domain to

simulate the surface of the planet Jupiter in the 1984 film 2010: The
Year We Make Contact. More recently, spherical domains have been

used to model the features of soap bubbles [Hill and Henderson

2016; Yang et al. 2019] and subsequently improved by introducing

chemomechanical factors [Huang et al. 2020]. Volumetric spheres of

fluid are common in graphics, as they can be used to enrich existing

simulations in the form of vortex [Pfaff et al. 2009; Selle et al. 2005]

or turbulence [Narain et al. 2008; Pfaff et al. 2010] particles, or serve

as the fundamental simulation primitive in the form of vorticles

[Angelidis 2017; Park and Kim 2005].

Outside of graphics, spherical domains are the preferred rep-

resentation for climate modeling, where early work focused on

representing surface-based scalar stream functions using spherical

harmonic coefficients [Silberman 1954], integrating forward in time

[Baer and Platzman 1961], and different choices for basis functions

[Boyd 1978; Orszag 1974]. An excellent overview of modern issues

is available in Drake [2014]. Fast transforms have been developed

for this case [Wedi et al. 2013], but they only apply to surface-based

spherical simulations, not the general radial domains we investigate.

Hollywood disaster movies often contain phenomena with a nat-

urally cylindrical geometry, such as tornadoes [Hall 2004; Yuksel

et al. 2012] and twisters [Fangmeier 1996]. Mushroom clouds ex-

hibit this symmetry, and so Rasmussen et al. [2003] developed a

cylindrical interpolation method for efficient simulation. Outside

of graphics, the study of flows through cylinders (pipe flow) goes

back to Reynolds [1883], and understanding its characteristics is

still an active topic in both experimental [Kühnen et al. 2018] and

computational [Morinishi et al. 2004] physics. The scenario remains

one of the canonical introductory examples in computational fluid

dynamics (CFD) texts [Griebel et al. 1998].

Toroidal geometries have appeared in graphics in the form of

smoke [Angelidis and Neyret 2005; Weissmann et al. 2014] and

bubble [Padilla et al. 2019] rings, and are used more broadly in

plasma physics for simulating the internal dynamics of tokamaks

[Tamain et al. 2016; Zhu et al. 2018].
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Ourwork builds on the Eigenfluidsmethod of DeWitt et al. [2012],

which was further stabilized using the variational methods of Liu

et al. [2015], and made asymptotically more scalable on rectangular

domains by Cui et al. [2018]. More localized, wavelet-based methods

have been developed for Cartesian [Mercier and Nowrouzezahrai

2020] and polar [Lessig 2019] domains, but we build on the global

approach of the original method. The existence of suitable radial

functions is not always clear, as scalar Laplacian eigenfunctions

in polar coordinates [Grebenkov and Nguyen 2013] involve Bessel

functions, which complicates the use of the FFT. Thus, we will

describe several principles for selecting suitable functions in §4.

Our approach is a spectral method [Boyd 2001; Burns et al. 2020]

which are known to be well-suited to cylindrical [Karpfinger et al.

2008] and spherical [Slevinsky et al. 2018] domains. Many basis

functions have been proposed for curved domains [Boyd and Yu

2011; Vasil et al. 2019], but scalar basis functions (e.g., Zernike poly-

nomials, Logan-Shepp polynomials, or spherical harmonics) must

again be chosen to smooth over coordinate singularities. Novel fast-

transform methods must be developed for each of these functions,

and high-rank simulations are otherwise impractical. We instead fo-

cus on trigonometric functions that already support such transforms,

which maintains the scalability of previous Eigenfluids approaches,

while also generalizing to curved domains. Other graphics works

have also leveraged the fact that projection onto a divergence-free

spectral basis can be faster than a Chorin projection [Henderson

2012; Long and Reinhard 2009], and that diffusion becomes a point-

wise exponential in the spectral domain [Stam 2002].

Finally, many subspace methods can be viewed as data-driven

spectral methods [Kim andDelaney 2013; Stanton et al. 2013; Treuille

et al. 2006]. These methods encounter the same memory storage

problems as DeWitt et al. [2012], which limits their basis rank. Com-

pression [Jones et al. 2016] can ameliorate this somewhat, but the

problem remains significant. Other analytic bases, such as Legendre

polynomials [Gupta and Narasimhan 2007] are also possible, but the

absence of a fast transform again limits the basis rank. Similar to

previous methods [Barbič and James 2005; Gerszewski et al. 2015]

we find it useful to enrich the basis with rigid-body-like modes. Un-

like these works, our basis functions are analytic, which allows us to

avoid a numerical SVD, and enables a variety of other efficiencies.

3 LAPLACIAN EIGENFLUIDS IN CARTESIAN
COORDINATES

Notation: We will use unbolded lower case to denote scalars, k ,
unbolded upper case to denote scalar functions, R(r ), bold lower

case to denote vectors, u, and bold upper case to denote matrices, C.
An over-dot denotes the time derivative, i.e., Ûw = dw

dt . We use the

Einstein summation convention, where a repeated index denotes

summation over that index. The scalar s is used to denote the basis

rank, and angled brackets are used to denote dot products, i.e.,

⟨ui , uj ⟩ = ui · uj . The 3rd order tensor C ∈ Rs×s×s (referred to as

the advection tensor) is used to encode advection.

In order to position our algorithm, we first summarize the scalable

Eigenfluids algorithm of Cui et al. [2018]. Constant density fluid

flow is governed by the incompressible Navier–Stokes equations:

Ûu = −u · ∇u + ν∇2u − ∇p + f (1)

∇ · u = 0. (2)

The vector f denotes external forces, and ν denotes viscosity. In

Laplacian Eigenfluids, the fluid velocity is represented using the

following linear combination:

u =
s∑
i=1

Φiwi . (3)

The Φi denote divergence-free eigenfunctions (∇ · Φi = 0) of the

vector Laplacian operator (∇2Φi = λiΦi ). Previous works [De Witt

et al. 2012; Liu et al. 2015] sample each Φi over a uniform grid

or tetrahedral mesh and store them in memory as a basis matrix

U =
[
Φ1 Φ2 . . .

]
. When s basis functions are sampled on a

n ×n ×n grid, the memory complexity isO(sn3), which can quickly

exceed available memory as s grows. Reconstructing the velocity

field in Eqn. 3 also takes an unwieldy O(sn3) time.

Cui et al. [2018] observed that in a rectangular Cartesian domain,

the basis functions admit closed-form expressions that support fast

transformations. For example, in a box domain [0, π ]2, one possible
set of basis functions is

Φx = −
1

ηi
i2 sin(i1x) cos(i2y) (4)

Φy =
1

ηi
i1 cos(i1x) sin(i2y), (5)

where i1, i2 ∈ Z
+
, and ηi =

√
i2
1
+ i2

2
. Then, the discrete cosine

(DCT) and sine (DST) transforms are used to represent the basis

functions. For example, Φx can be represented by DST coefficients

in the x direction and DCT coefficients alongy. This way, non×n×n
grid is needed to store Φx , and memory complexity asymptotically

improves from O(sn3) to O(s). Velocity reconstruction (Eqn. 3) is

also accelerated by the DCT and DST, improving time complexity

from O(sn3) to O(n3 log(n)). However, these improvements only

apply when the fluid is constrained to a closed Cartesian box.

Advection is computed using a 3
rd

order tensor:

Ûwд = Cдhiwhwi (6)

Cдhi =
∫
Ω
∇ × Φд · (Φh × Φi )dΩ. (7)

The tensor entries are computed using the variational rule of Liu et al.

[2015], and solved with an implicit trapezoidal rule that guarantees

conservation of energy and enables inviscid simulations. Because

the basis functions are eigenfunctions of the Laplacian operator, dif-

fusion is trivially solved with exponential decay:wt+1
k = wt

ke
ν∆tλk .

External forces are projected onto the basis,
ˆf = UT f , and then

added to coefficients: wt+1 = wt + ∆t ˆf .

Discussion: The scalability of this approach stems from the use

of trigonometric eigenfunctions that are amenable to the FFT, as

well as analytic differentiation and integration. While Laplacian

eigenfunctions in non-Cartesian coordinates may admit fast trans-

formations (e.g., spherical harmonics [Mohlenkamp 1999]), they

require the construction of new codes. In this work, we use basis
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functions that are already supported by highly-optimized and well-

established FFT libraries, such as FFTW [Frigo and Johnson 2005].

The differentiation and integration over other special (e.g., Bessel)

functions are also more involved, which complicates basis func-

tion design and advection tensor computation. For these multiple

reasons, we specifically target trigonometric functions.

4 GENERATING BASIS FUNCTIONS
In this section, we present a method for generating basis functions

for radial domains. We start with the divergence-free constraint,

which results in an under-constrained system. Next, we describe a

set of principles for selecting additional constraints, resulting in a

system that generates functions with a range of desirable properties.

In subsequent sections, we use these principles to generate basis

functions for a variety of radial domains.

The radially symmetric coordinate systems we use in this paper

are instances of orthogonal coordinates, where all coordinate iso-

contours meet at right angles. For a vector field s parameterized

by orthogonal coordinate variables qi , where i ∈ {1, 2, 3}, the di-
vergence operator and divergence-free condition can be expressed

as [Korn and Korn 2000]:

∇ · s =
1

д

[
h2h3

∂s1
∂q1
+ h1h3

∂s2
∂q2
+ h1h2

∂s3
∂q3

]
= 0 (8)

The hi are scale factors along each dimension, and defined as the

norms of the basis vectors, hi = |ei |. The basis vectors are deriva-
tives about the parameterized points p as follows: ei =

∂p
∂qi

. The

Jacobian determinant of the coordinates is then д = h1h2h3.
The divergence-free condition is a first-order differential equation

where the components of s are the unknowns. In 2D, a divergence-

free vector field can be obtained by specifying one component and

solving for the other. However, two components must be specified

in 3D, so the system is under-constrained. Therefore, we establish

four principles for selecting constraints that yield basis functions

with desirable properties.

Principle 1. The basis functions should support efficient FFT-based

operations. The components of basis functions should be trigono-

metric (sin, cos). Since the solved component arises from derivatives

and integrals, it also becomes constrained to be trigonometric. FFT-

based support for the basis functions is then guaranteed.

Principle 2. The basis functions should be separable along each co-
ordinate. For example, in spherical coordinates, we assume each com-

ponent is the summed product of 1D scalar functions: R(r )T (θ )P(ϕ).
This reduces Eqn. 8 to an ordinary differential equation along each

direction, and the integral of the basis functions becomes three sep-

arate 1D integrals. This will later allow the entries of the advection

tensor to be computed analytically.

Principle 3. The basis functions must be smooth and continuous

at radial and angular boundaries. The first two principles already

allow a generic set of basis functions to be obtained, but the radial

direction can contain singularities that must be smoothed over

with appropriate boundary conditions [Hill and Henderson 2016].

In the angular direction, a periodic boundary condition is needed

to maintain smoothness, e.g., across the jump between 0 and 2π .

The appropriate boundary conditions should be derived for each

individual coordinate and used to select the basis functions once a

generic set is obtained.

Principle 4. The basis functions should also be able to represent all
divergence-free flows in the domain. After applying principle 3, the

basis functions are often incomplete because they lack translation

and rotation modes at coordinate singularities. We complete the

bases by introducing enrichment functions to capture these modes.

5 POLAR BASIS FUNCTIONS

5.1 Generating Polar Basis Functions
We will now apply the principles from §4 to polar coordinates and

generate a core set that we refer to as the principal basis functions.
We will later see that they are necessary, but not sufficient, for

representing arbitrary flows. A point p is parameterized in polar

coordinates as

px = r cos(θ ) py = r sin(θ ), (9)

where r ∈ [0,∞), θ ∈ [0, 2π ), and we limit our domain to a closed

circle, r ≤ 1. The divergence-free condition (Eqn. 8) becomes:

∇ · s =
1

r

(
sr + r

∂sr
∂r
+
∂sθ
∂θ

)
= 0. (10)

Following the principle 2, we limit ourselves to separable solutions

of the form sr = Rr (i1πr )Tr (i2θ ) and sθ = Rθ (r )Tθ (θ ), where i1 and
i2 are wavenumbers. Following principle 1, we also limit Rr and Tr
to sine or cosine functions. The unknown functions are now Rθ (r )
and Tθ (θ ), and Eqn. 10 simplifies to:

Rr (i1πr )Tr (i2θ ) + r
∂Rr (i1πr )

∂r
Tr (i2θ ) + Rθ (r )

∂Tθ (θ )

∂θ
= 0. (11)

Principle 2 guarantees we can use separation of variables to solve

this equation as:

Rθ (r ) = −Rr (i1πr ) − r
∂Rr (i1πr )

∂r
(12)

Tθ (θ ) =

∫
Tr (i2θ )dθ + L(r ). (13)

If we assign L(r ) = 0, then Rθ and Tθ become fully specified by Rr
and Tr , and we obtain two vector basis functions. (Non-zero L(r )
will be revisited in §5.3.) For example, the functions arising from

Rr = sin(i1πr ) are:{
Φ0

r (r , θ ) = sin(i1πr ) sin(i2θ )

Φ0

θ (r , θ ) =
1

i2 (sin(i1πr ) + i1πr cos(i1πr )) cos(i2θ )
(14){

Φ1

r (r , θ ) = sin(i1πr ) cos(i2θ )

Φ1

θ (r , θ ) = −
1

i2 (sin(i1πr ) + i1πr cos(i1πr )) sin(i2θ ),
(15)

where the superscript i in Φi
∗ indexes the vector basis functions.

Using the first two principles, we have generated two vector basis

functions, Φ0

∗ and Φ1

∗, that are both divergence-free and composed

entirely of FFT-friendly trigonometric functions.
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5.2 Setting Boundary Conditions
Next, we use principle 3 to establish appropriate boundary condi-

tions. Smoothness demands a periodic boundary condition in the θ
direction,Φ(r , θ ) = Φ(r , θ+2π ), that guarantees a smooth transition

between θ = 0 and θ = 2π . This boundary condition is satisfied by

constraining i2 in Eqns. 14 and 15 to a positive integer: i2 ∈ Z
+
.

In the radial direction, a Dirichlet boundary can be established at

the border, ur (r = 1) = 0, by also constraining i1 in Eqns. 14 and 15

to i1 ∈ Z
+
. Alternatively, a Neumann open-boundary condition of

∂ur
∂r

���
r=1
= 0 can instead be achieved [Cui et al. 2018] by offsetting

i1 by 1/2 to obtain i1 ∈
(
Z+ − 1/2

)
.

Finally, polar coordinates are singular at r = 0, which maps the

entire parameter range θ ∈ [0, 2π ) to a single spatial point. Thus,

consistency can only be maintained if the polar velocities at r = 0 all

map to a single, unique velocity. Hill and Henderson [2016] express

this boundary condition using a transformation between polar and

Cartesian coordinates:[
ux
uy

]
=

[
cos(θ ) − sin(θ )
sin(θ ) cos(θ )

] [
ur
uθ

]
. (16)

The Cartesian velocity ux and uy at r = 0 should be constant with

respect to θ , which leads to the following boundary condition:

∂ur
∂θ

����
r=0
= uθ

∂uθ
∂θ

����
r=0
= −ur . (17)

The polar basis functions Φ0

∗, Φ
1

∗ from Eqns. 14 and 15 are both zero

at r = 0, which satisfy these conditions.

Therefore, as long as i1 ∈ Z
+
and i2 ∈ Z

+
for Dirichlet bound-

aries, or i1 ∈
(
Z+ − 1/2

)
and i2 ∈ Z

+
for Neumann boundaries, the

boundaries satisfy our smoothness conditions. These basis func-

tions are visualized in Fig. 2 to illustrate the intuitive relationship

between their wavenumbers and the resulting spatial frequencies.

The two basis functions complement each other, are orthogonal

(⟨Φ0

∗,Φ
1

∗⟩ = 0) because integrating along θ always yields zero, and

support fast transformations (see §9.1). This concludes our treat-

ment of the principal polar basis functions. Next, we will see that
these functions form a necessary, but not sufficient, set.

5.3 Enrichment Basis Functions
The principal basis functions are not sufficient for representing

general flows inside a disc. Critically, they cannot represent non-

zero velocities at r = 0. As shown on the left in Fig. 3, this causes all

flows through the center of the disc to develop non-physical kinks.

More generally, the basis suffers from a well-known lack of rigid

translation and rotation modes [Terzopoulos and Witkin 1988], as

these often fall within the nullspace of the generating equations.

Thus, we now revisit Eqn. 13 to derive three enrichment basis func-
tions that correspond to these modes. As seen on the right of Fig. 3,

their addition successfully removes the artifacts.

To derive our enrichment basis functions, we again apply prin-

ciples 1 and 2 and limit ourselves to separable, trigonometric func-

tions. To obtain a non-zero value at the center, we first select

Rr = cos(i1πr ). The first translation modeΦ2

∗ can then be generated

(a) Φ0

∗ for different wavenumbers i1 and i2.

(b) Φ1

∗ for different wavenumbers i1 and i2.

Fig. 2. Visualizations of polar basis functions Φ0

∗ and Φ1

∗ with Dirichlet
boundaries. Wavenumber i2 directly controls the number of periods in the
θ direction.

(a) Without enrichment (b) With enrichment

Fig. 3. Left: A polar simulation with only principal functions develops a
non-physical kink due to the singularity at the pole. Right: After enrichment,
the same simulation flows naturally through the pole.

by inserting Tr = sin(i2θ ) into Eqn. 13:{
Φ2

r = cos(i1πr ) sin(i2θ )

Φ2

θ = 1

i2 (cos(i1πr ) − i1πr sin(i1πr )) cos(i2θ ).
(18)

The periodic boundary condition is satisfied by constraining i2 ∈
Z+. The Dirichlet border is satisfied by i1 ∈

(
Z+ − 1/2

)
, while the

Neumann border is satisfied by i1 ∈ Z. As desired, the basis becomes

now non-zero at r = 0:

Φ2

r (r = 0) = sin(i2θ ) Φ2

θ (r = 0) =
1

i2
cos(i2θ ). (19)

The smoothness boundary condition at the pole from Eqn. 17 yields

i2 = 1, which further simplifies Φ2

∗ to:{
Φ2

r = cos(i1πr ) sin(θ )

Φ2

θ = (cos(i1πr ) − i1πr sin(i1πr )) cos(θ ).
(20)

The center now evaluates to Φ2

r = sin(θ ) and Φ2

θ = cos(θ ), and
corresponds to a translation in the y direction: ux = 0, uy = 1.

These basis functions are visualized in Fig. 4(a).
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The corresponding x-translation is obtained by inserting Rr =
cos(i1πr ) and Tr = cos(θ ) into Eqn. 13:{

Φ3

r = cos(i1πr ) cos(θ )

Φ3

θ = (− cos(i1πr ) + i1πr sin(i1πr )) sin(θ ).
(21)

This evaluates to Φ3

r = cos(θ ) and Φ3

θ = − sin(θ ) at the center,

yielding the desired x-translation of: ux = 1, uy = 0. These are

further visualized in Fig. 4(b).

(a) Enrichment function Φ2

∗, which forms a y-translation at the center.

(b) Enrichment function Φ3

∗, which forms a x-translation at the center.

Fig. 4. Visualizations of enrichment basis functions with Dirichlet boundary
conditions.

The last enrichment basis function captures global rotation. We

revisit Eqn. 13 for the case of non-zero L(r )which we now discretely

sample to obtain: {
Φ4

r = 0,

Φ4

θ = sin(i1πr ).
(22)

Our basis set is now complete. The principal basis functions {Φ0

∗,Φ
1

∗}

capture the fine details, while the enrichment functions {Φ2

∗,Φ
3

∗,Φ
4

∗}

capture the bulk rigid motions. Our final basis is their union, {Φ0

∗,

Φ1

∗,Φ
2

∗,Φ
3

∗,Φ
4

∗}. The same set generalizes to elliptical coordinates,

which we show in Appendix B. We numerically verify the complete-

ness of this basis in §10. Compared to Laplacian eigenfunctions from

Cui et al. [2018], the basis is not orthogonal, so we use Gram-Schmidt

to impose orthogonality, during which we filter basis functions that

are sufficiently represented by existing components to improve

numerical conditioning. Details are provided in Appendix A.

6 VOLUMETRIC SPHERICAL BASIS
The approach from §4 generalizes almost directly to codimensional

(surface-based) flow on a sphere, so we defer that case to the sup-

plement. However, a new double singularity appears at r = 0 in the

volumetric case, so we cover that case here.

6.1 Spherical Divergence Operator
A Cartesian point p is parameterized in spherical coordinates as

px = r sin(θ ) cos(ϕ) py = r sin(θ ) sin(ϕ) pz = r cos(θ ), (23)

where r ∈ [0,∞), θ ∈ [0, π ],ϕ ∈ [0, 2π ). The divergence operator in
spherical coordinates is:

∇ · s =
1

r2 sin(θ )

[
sin(θ )

∂

∂r
(r2sr ) + r

∂

∂θ
(sθ sin(θ )) + r

∂sϕ
∂ϕ

]
. (24)

First, we solve the function along ϕ direction. Using principle 2, we

assume the separate forms,

sr = Ar (r )Aθ (θ )B(ϕ) sθ = Cr (r )Cθ (θ )D(ϕ) sϕ = Er (r )Eθ (θ )F (ϕ),

which in turn yields

1

r sin(θ )

[
∂ sin(θ )Cr (r )Cθ (θ )

∂θ
D(ϕ) + Er (r )Eθ (θ )

∂F (ϕ)

∂ϕ

]
+

1

r2
∂r2Ar (r )Aθ (θ )

∂r
B(ϕ) = 0.

(25)

Using separation of variables, trigonometric functions along ϕ can

be solved by setting B(ϕ) = D(ϕ) =
∂F (ϕ)
∂ϕ . The divergence-free

condition then simplifies to:

sin(θ )

[
r
∂Ar
∂r

Aθ + 2ArAθ +
∂Cθ
∂θ

Cr

]
+ cos(θ )CrCθ + ErEθ = 0.

(26)

This equation is under-constrained, and different term choices yield

different basis functions.Wewill now derive two versions, where the

first results in compact solutions that are unsuitable as a principal

basis they do not vanish at the poles. The second will contain zeros

that make it suitable as a principal basis.

6.2 Generating Spherical Basis Functions
6.2.1 Version 1. We group Eqn. 26 as follows:[

sin(θ )

(
r
∂Ar
∂r

Aθ + 2ArAθ +
∂Cθ
∂θ

Cr

)]
+

[cos(θ )CrCθ + ErEθ ] = 0.

(27)

The most compact solution can be obtained by assuming that each

addend separately sums to zero,

r
∂Ar
∂r

Aθ + 2ArAθ +
∂Cθ
∂θ

Cr = 0

cos(θ )CrCθ + ErEθ = 0,
(28)

yielding the terms

Aθ =
∂Cθ
∂θ

Cr = −r
∂Ar
∂r
− 2Ar ErEθ = − cos(θ )CrCθ . (29)

The general solution follows:
sr = Ar

∂Cθ
∂θ

∂F (ϕ)
∂ϕ

sθ = −
(
r ∂Ar

∂r + 2Ar
)
Cθ

∂F (ϕ)
∂ϕ

sϕ =
(
r ∂Ar

∂r + 2Ar
)
cos(θ )Cθ F (ϕ).

(30)

Once the boundary condition at the poles (θ = 0, θ = π ) is es-
tablished, it will become obvious that this version is unsuitable for

principal bases, as it does not evaluate to zero at the poles. Therefore

we will derive a second version to be used as principal bases.
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6.2.2 Version 2. We obtain our second version by setting Aθ =
A∗θ sin(θ ) and Cθ = C

∗
θ sin(θ ), where A

∗
θ and C∗θ are as-yet unspeci-

fied scalar functions. The sin(θ ) term pins velocity to zero at θ = 0

and θ = π , which wewill need later as a boundary condition. Eqn. 26
then simplifies to:[

sin
2(θ )

(
r
∂Ar
∂r

A∗θ + 2ArA
∗
θ +
∂C∗θ
∂θ

Cr

)]
+[

sin(2θ )CrC
∗
θ + ErEθ

]
= 0.

(31)

Again assuming each addend sums to zero yields

A∗θ =
∂C∗θ
∂θ

Cr = −r
∂Ar
∂r
− 2Ar ErEθ = − sin(2θ )CrC

∗
θ , (32)

which leads to the general basis functions:
sr = Ar

∂Cθ
∂θ sin(θ )

∂F (ϕ)
∂ϕ

sθ = −
(
r ∂Ar

∂r + 2Ar
)
Cθ sin(θ )

∂F (ϕ)
∂ϕ

sϕ =
(
r ∂Ar

∂r + 2Ar
)
sin(2θ )Cθ F (ϕ).

(33)

With these two generating functions in hand, we can now specify

boundary conditions.

6.3 Setting Boundary Conditions
Similar to the polar case, a periodic boundary condition is needed:

Φ(θ,ϕ) = Φ(θ ,ϕ + 2π ). Next, a consistency condition applies to the

two poles, as well as the central axis connecting them:

∂ur
∂ϕ
= 0

∂uϕ
∂ϕ
= −uθ

∂uθ
∂ϕ
= uϕ at θ = 0, (34)

∂ur
∂ϕ
= 0

∂uϕ
∂ϕ
= uθ

∂uθ
∂ϕ
= −uϕ at θ = π . (35)

Finally, the center r = 0, contains a double singularity, as the pa-
rameter range [θ ,ϕ] ∈ [0, π ] × [0, 2π ) maps to a single point, and

necessitates simultaneous consistency requirements in both the

θ and ϕ directions. These can be expressed by transforming the

velocity between Cartesian and spherical coordinates:
ux
uy
uz

 =

sin(θ ) cos(ϕ) cos(θ ) cos(ϕ) − sin(ϕ)
sin(θ ) sin(ϕ) cos(θ ) sin(ϕ) cos(ϕ)

cos(θ ) − sin(θ ) 0



ur
uθ
uϕ

 . (36)

The Cartesian velocity ux , uy and uz must be constant at r = 0with

respect to both θ and ϕ, which yields the boundary condition:

∂ux
∂ϕ
=
∂ux
∂θ
=
∂uy
∂ϕ
=
∂uy
∂θ
=
∂uz
∂ϕ
=
∂uz
∂θ
= 0 at r = 0.

(37)

This completes the boundary conditions, and we will now generate

basis functions that satisfy them using the two functions from §6.2.

6.4 Principal and Enrichment Functions
6.4.1 Principal Basis Functions. We will use Version 2 as our gen-

erating function (Eqn. 33). By design, this function was weighted

by sin(θ ) in all three components to create zeros at θ = 0 and

θ = π that satisfy the boundary conditions in Eqns. 34 and 35. The

boundary condition in Eqn. 37 is satisfied by choosing A(i1πr ) =
sin( π

2
r ) sin(i1πr ), as we need a radial function whereAr (r = 0) = 0.

The sin( π
2
r ) term attenuates velocities at the center, as we found

that high frequency, anisotropic artifacts can otherwise appear as

the viscosity approaches zero. The enrichment functions will later

reintroduce velocities to this region.

Four principal basis functions can now be generated by following

principle 1 and assigning Cθ and F (ϕ) to trigonometric functions.

The first set is obtained with Cθ = sin(i2θ ) and F (ϕ) = cos(i3ϕ):
Φ0

r = i2i3 sin(
π r
2
) sin(i1πr ) sin(θ ) cos(i2θ ) sin(i3ϕ)

Φ0

θ = −i3L(r ) sin(θ ) sin(i2θ ) sin(i3ϕ)

Φ0

ϕ = −L(r ) sin(2θ ) sin(i2θ ) cos(i3ϕ).

(38)

The scalar function L(r ) denotes:

L(r ) = i1πr sin (ω) cos(i1πr ) + (ω cos (ω) + 2 sin (ω)) sin(i1πr )

where ω = π r
2
. The next three sets are:

Φ1

r = i2i3 sin(
π
2
r ) sin(i1πr ) sin(θ ) cos(i2θ ) cos(i3ϕ)

Φ1

θ = −i3L(r ) sin(θ ) sin(i2θ ) cos(i3ϕ)

Φ1

ϕ = L(r ) sin(2θ ) sin(i2θ ) sin(i3ϕ),

(39)


Φ2

r = i2i3 sin(
π r
2
) sin(i1πr ) sin(θ ) sin(i2θ ) sin(i3ϕ)

Φ2

θ = i3L(r ) sin(θ ) cos(i2θ ) sin(i3ϕ)

Φ2

ϕ = L(r ) sin(2θ ) cos(i2θ ) cos(i3ϕ),

(40)


Φ3

r = i2i3 sin(
π r
2
) sin(i1πr ) sin(θ ) sin(i2θ ) cos(i3ϕ)

Φ3

θ = i3L(r ) sin(θ ) cos(i2θ ) cos(i3ϕ)

Φ3

ϕ = −L(r ) sin(2θ ) cos(i2θ ) sin(i3ϕ).

(41)

6.4.2 Enrichment Functions for θ = 0, π . We first enrich the basis

along the central axis of θ = 0, π , excluding the double-singularity
at the center, using Version 1 from Eqn. 30.

We choose A(i1πr ) = sin( π
2
r ) sin(i1πr ) to satisfy the condition

from Eqn. 37. We then choose Cθ = cos(i2θ ), so that st and sθ are

non-zero at the poles. This results in two enrichment basis functions,

the first of which is generated with F (ϕ) = cos(ϕ):
Φ4

r = i2 sin(
π r
2
) sin(i1πr ) sin(i2θ ) sin(ϕ)

Φ4

θ = L(r ) cos(i2θ ) sin(ϕ)

Φ4

ϕ = L(r ) (cos(θ ) cos(i2θ )) cos(ϕ).

(42)

At the north pole of θ = 0, the basis function evaluates to,
Φ4

r (θ = 0) = 0,

Φ4

θ (θ = 0) = L(r ) sin(ϕ),

Φ2

ϕ (θ = 0) = L(r ) cos(ϕ),

(43)

which satisfies Eqn. 34. At the south pole of θ = π , we obtain
Φ4

r (θ = π ) = 0,

Φ4

θ (θ = π ) = L(r ) cos(i2π ) sin(ϕ),

Φ2

ϕ (θ = π ) = −L(r ) cos(i2π ) cos(ϕ),

(44)
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which satisfies the boundary of Eqn. 35. A second, similar set is

generated using F (ϕ) = sin(ϕ):
Φ5

r = i2 sin(
π r
2
) sin(i1πr ) sin(i2θ ) cos(ϕ)

Φ5

θ = L(r ) cos(i2θ ) cos(ϕ)

Φ5

ϕ = −L(r ) cos(θ ) cos(i2θ ) sin(ϕ).

(45)

In all previous cases, i2 ∈ Z
+
, and the periodic boundary is sat-

isfied by setting i3 ∈ Z
+
. Dirichlet boundaries can be attained by

setting i1 ∈ Z
+
, and Neumann can be attained with i1 ∈ (Z

+ − 1/2).

Next, we must enrich the double-singularity at the center, r = 0.

6.4.3 Enrichment Functions for r = 0. We will start with translation

modes, and observe that each row of the velocity transform in Eqn.

36 can be viewed as a constant flow in each Cartesian direction.

For example, the third row ur = cos(θ ), uθ = − sin(θ ), uϕ = 0 is

a constant flow along the z-axis, ux = 0, uy = 0, uz = 1. Thus, if

we can find basis functions that correspond to these rows, we can

satisfy the boundary conditions in Eqn. 37.

First, we focus on the last row,

[
cos(θ ) − sin(θ ) 0

]
, which

implies B(ϕ) = 1,D(ϕ) = 1 and F (ϕ) = 0 for Eqn. 25, and simplifies

the divergence-free constraint to:(
r
∂Ar
∂r
+ 2Ar

)
sin(θ )Aθ +Cr

(
sin(θ )

∂Cθ
∂θ
+ cos(θ )Cθ

)
= 0 (46)

The last row also implies Aθ = cos(θ ), and Ar = cos(i1r ) is cho-
sen similar to the polar case. Solving this equation, we obtain the

enrichment basis for the z-axis,
Φ6

r = cos(i1πr ) cos(θ )

Φ6

θ =
(
− cos(i1πr ) +

1

2
i1πr sin(i1πr )

)
sin(θ )

Φ6

ϕ = 0.

(47)

As a consistency check, the center evaluates to:

Φ6

∗(r = 0) =
[
cos(θ ) − sin(θ ) 0

]T
, (48)

which corresponds to u =
[
0 0 1

]T
, and so the boundary condi-

tion in Eqn. 37 is satisfied.

Next, we enrich along the y-axis using the second row of Eqn.

36,

[
sin(θ ) sin(ϕ) cos(θ ) sin(ϕ) cos(ϕ)

]
, which implies B(ϕ) =

D(ϕ) = sin(ϕ), F (ϕ) = cos(ϕ), Aθ = sin(θ ) and Cθ = cos(θ ). Substi-
tuting into Eqn. 25, we obtain:

sin
2(θ )

[(
r
∂Ar
∂r
+Ar

)
+Ar −Cr

]
+ cos2(θ )Cr − ErEθ = 0. (49)

This can be solved by setting

Cr = r
∂Ar
∂r
+Ar ErEθ = Ar + r

∂Ar
∂r

cos
2(θ ). (50)

By assigning Ar = cos(i1r ), we obtain the enrichment function:
Φ7

r = cos(i1πr ) sin(θ ) sin(ϕ)

Φ7

θ = (−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) sin(ϕ)

Φ7

ϕ =
(
−i1πr sin(i1πr ) cos

2(θ ) + cos(i1πr )
)
cos(ϕ).

(51)

Checking the center again,

Φ7

∗(r = 0) =
[
sin(θ ) sin(ϕ) cos(θ ) sin(ϕ) cos(ϕ)

]T
, (52)

we obtain the expected u =
[
0 1 0

]T
.

Swapping the ϕ functions in Eqn. 51 yields the x-axis basis:
Φ8

r = cos(i1πr ) sin(θ ) cos(ϕ)

Φ8

θ = (−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) cos(ϕ)

Φ8

ϕ = −
(
−i1πr sin(i1πr ) cos

2(θ ) + cos(i1πr )
)
sin(ϕ).

(53)

The center velocity is:

Φ8

∗(r = 0) =
[
sin(θ ) cos(ϕ) cos(θ ) cos(ϕ) − sin(ϕ)

]T
, (54)

which corresponds to the desired u =
[
1 0 0

]T
. For these three

functions, Neumann boundaries can be attained by setting i1 ∈ Z,
and Dirichlet with i1 ∈ (Z

+ − 1/2).

Finally, to capture circular flow around the center axis, we add

the last enrichment basis:{
Φ9

r = Φ9

θ = 0

Φ9

ϕ = sin( π r
2
) sin(i1πr ) sin(i2θ ).

(55)

Circular flows along the other axes are already captured by the

principal functions, so no further enrichment is necessary. The final

volumetric spherical basis is the union {Φ0

∗,Φ
1

∗, . . .Φ
9

∗}.

Generalization to cylinders and tori proceeds similarly, and spheroids

are direct extensions of the spherical case. Thus, all are shown in

the supplementary material.

7 SPIRAL-SPECTRAL FLUID DYNAMICS
With the basis functions in place, we now address the dynamics

of a spiral-spectral fluid. We first examine advection, as we would

like to apply the variational approach of Liu et al. [2015], which

both guarantees stability and enables inviscid simulations. However,

the approach assumes the basis functions are orthogonal, which is

no longer true in our case. Thus, we present an orthogonalization

approach that allows variational advection while maintaining the

analytic nature of our basis functions.

Next, we address the diffusion, which has a trivial exponential

decay solution when the Laplacians of the basis functions project

onto themselves. This no longer holds for our new spiral functions,

so we present an analytic projection of the diffusion operator onto

our basis. The resulting system can be solved at a negligible cost

relative to the advection solver.

7.1 Advection With Orthogonalization
In this section, for the sake of brevity, we will refer to explicit

instantiations of our basis functions using a single subscript, Φi . For

example, Φ6 could refer to Φ0

∗ with explicit wavenumbers i1 = 2

and i2 = 3.

Similar to when rigid modes or modal derivatives are added to a

subspace basis [Barbič and James 2005], we must first orthogonalize

our basis functions. We use a Gram-Schmidt process (see Appen-

dix A) to obtain a set of orthogonal basis functions {v1, v2, . . . , vs }.
The Gram-Schmidt process yields a transfer matrix A that trans-

forms our spiral basis functions into an orthogonal basis:

V = AP. (56)

The matrix V is a concatenation of all of the orthogonal basis func-

tions, i.e., VT =
[
v1 v2 · · · vs

]
, and matrix P concatenates

our spiral basis functions Φi , i.e., PT =
[
Φ1 Φ2 · · · Φs

]
. We
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index into these basis functions with a subscript, i.e., vi and Φi
where 1 ≤ i ≤ s .

The basis coefficients wi in Eqns. 3 and 7 now correspond to the

coefficients of vi . With this orthogonal basis, we can compute the

advection tensor of Liu et al. [2015]:

Cдhi =
∫
(∇ × vi ) · (vд × vh )dΩ. (57)

In general, we do not have compact expressions for vi , so we expand
C in terms of our spiral basis functions Φi :

Cдhi = AilAдmAhn

∫
(∇ × Φl ) · (Φm × Φn )dΩ

= AдmAhnAilTmnl .

(58)

We useT to denote the advection tensor computed using the original

Φi . This tensor can be computed analytically, as Φi are analytic.

A straightforward approach would be to compute T and then

orthogonalize according to Eqn. 58. However, this approach isO(s4)
for s basis functions, because computing one entry of AilTmnl
requires iterating overO(s) entries in T. Precomputing the tensor is

already an O(s3) operation that can take hours for large s ≈ 10000.

We instead avoid this undesirable O(s4) bottleneck by orthogo-

nalizing the advection tensor on-the-fly inside the implicit advection

solver. The orthogonalization can be achieved with only a few ex-

tra matrix-vector products during each iteration of our conjugate

gradients (CG) solver. The trapezoidal update rule is used to solve

for the advection:(
I −

∆t

2

C
)
wt+1 =

∆t

2

Cwt +wt + f (59)

where Ci j = Ci jkwt
k . We use Eqn. 58 to expand the matrix C in

terms of the original tensor T:

Cдh = AдmAhnTmnlAilwi

= AдmAhnTmnlyl
= AдmTmnAhn

= (ATAT )дh .

(60)

The vector y = ATw is the coefficients of the original spiral basis

functions, and contracts with the tensor T to yield the matrix T.
Thus, the new system matrix becomes ATAT .

Previous work [Cui et al. 2018] solved Eqn. 59 using conjugate

gradients on the normal equations (CGNR) [Saad 2003]. Our new

system matrix requires six matrix-vector products at each CGNR

iteration: three for ATAT , and three for its transpose. A detailed

pseudocode of the CGNR algorithm is shown in §8 of our supplemen-

tary material. Compared to Cui et al. [2018], four extra matrix-vector

products are needed. However, A is very sparse, because most spiral

basis functions were already orthogonal (see Appendix A). These

sparse matrix-vector products with A are relatively negligible com-

pared to the dense matrix-vector multiplies elsewhere in the solver,

so we found the run-time performance of CGNR to be similar to

previous work.

7.2 Analytically Reduced Diffusion
Next, we address diffusion in spiral-spectral fluid simulations. An

implicit diffusion step [Stam 1999] can be written in Cartesian coor-

dinates as:

(I − ν∆t∇2)ut+1 = ut (61)

Expanding u in terms of our orthogonal basis functions yields:

(I − ν∆t∇2)VTwt+1 = VTwt . (62)

Left-multiplying this equation with V, and expanding in terms of

the transfer matrix V = AΦ, obtains an implicit diffusion equation:

(I − ν∆tADAT )wt+1 = wt . (63)

The matrix D ∈ Rs×s is equal to P∇2PT . The entries of D can then

be computed as:

Di j =

∫
Ω
Φi · (∇

2Φj )dΩ. (64)

Compared to previous work which explicitly integrates against a

subspace basis matrix [Kim and Delaney 2013; Stanton et al. 2013;

Treuille et al. 2006], this integration can be computed analytically,

because both the basis functions Φi and their Laplacians ∇2Φj are

analytic. The complexity of precomputing D is thus O(s2).
While Eqn. 63 can be pre-factored, we use a CG solver because

D is very sparse in practice, and each iteration only involves three

sparse matrix-vector products. We found that Eqn. 63 converges in

a similar number of iterations as advection, but requires no dense

matrix-vector product. Thus, the diffusion solve is negligible relative

to the advection solve.

8 COMPARISONS TO OTHER SPECTRAL METHODS
In this section, we discuss the completeness of our chosen spectral

functions, and compare against other spectral methods.

8.1 Completeness of Basis Functions
One important question is whether our chosen spectral basis is

complete, i.e., that it can represent any arbitrary vector field over

its domain. To establish this, we compare it to an established set of

spherical harmonic functions that are known to be divergence-free,

vector valued, and complete [Barrera et al. 1985; Hill 1954]. In §7 of

our supplementary material, we show that for any basis function in

that set, there exists a non-zero projection of our own bases onto

that function. Therefore, our functions do not omit any spectral

modes, and are complete. Further details are in the supplemental

material, where we also show that several low-order vector spherical

harmonics on the sphere are in fact identical to our basis functions.

8.2 Comparison with Existing Spectral Methods
We compared our Spiral-Spectral method to the spherical-spectral

method of Lecoanet et al. [2019], which has an open-source im-

plementation in the Dedalus [Burns et al. 2020] framework. The

results are shown in Fig. 5. In this scene, we applied an impulse

that pushed two blocks of smoke into each other near the center

of a sphere. No other external forces were applied, and we ran the

experiment under different viscosities. We used a similar number of

basis functions in both simulations. Advection in Dedalus is com-

puted using an explicit scheme on a spatial quadrature grid, which
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Fig. 5. Two blocks of smoke with viscosity is 10−5 are pushed toward each
other. Top: The explicit spectral advection scheme from Lecoanet et al.
[2019] blows up at frame 93, despite substepping with a timestep an order of
magnitude smaller than ours.Bottom:Our semi-implicit advection achieves
better stability, while maintaining a similar appearance.
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Fig. 6. Energy behavior of Fig. 5. The spectral approach of Lecoanet et al.
[2019] becomes unstable at viscosity 10

−5, while our method maintains
stability. In general, our method is also more energy-preserving.

is faster but more unstable than our semi-implicit approach. To

establish a baseline, each simulation was given an equal amount of

wall-clock time for computation. This resulted in a timestep size

of 0.03s for our simulations, and a smaller 0.001s is used for the

Dedalus simulations.

At larger viscosities, e.g., 10
−3
, both yield plausible flows, but

our method is consistently more energy-preserving (Fig. 6). As

the viscosity decreases, the explicit advection scheme becomes in-

creasingly unstable, and the Dedalus simulation diverges. At zero

viscosity, we even tried decreasing the Dedalus timestep to 10
−5
,

but the simulation still diverged.

9 OPTIMIZATION AND IMPLEMENTATION
In this section, we describe several algorithmic optimizations and

implementation details for spiral-spectral fluid simulation.

9.1 Efficient Transformations
Transforming between our basis functions and spatial velocity fields

is the main computational cost of the simulation. A naïve approach

would transform each basis individually and sum the results, but

the functions have a shared structure that can be leveraged.

Fig. 7. Efficient polar velocity recon-
struction first applies r -transforms to
each basis function, then a shared θ
transform to their sums.

For simplicity, we dis-

cuss transforming the ur
component in polar coordi-

nates (Fig. 7). The r com-

ponent of Φ0

r = sin(i1πr )
sin(i2θ ) andΦ

2

r = cos(i1πr )
sin(θ ) in Eqn. 14 and Eqn.

20 share a DST in the θ di-

rection. An efficient imple-

mentation applies a DST to

Φ0

r and DCT to Φ2

r along

the r direction. Then, a

shared DST can be applied

to their sum in the θ direc-

tion. This reconstructs Φ0

r and Φ2

r with three transforms instead of

four. The basis functions Φ1

r in Eqn. 15 and Φ3

r in Eqn. 21 can be

transformed in a similar manner. Finally, the full rank velocity ur is
obtained by adding the results together.

This process can be combined with the pruned transforms from

Cui et al. [2018]. In 2D, an n × n grid with s basis functions can be

reconstructedwithn transformations along the r direction. However,
only

√
s transforms are needed because the coefficients are located

in a

√
s ×
√
s square about the DC component. A rank-n transform

is then applied in the θ direction. Four r -transforms and the first

two summations from Fig. 7 are reduced to rank-

√
s , which can be

computed on a

√
s × n grid.

The naïve approach needs eight rank-n transforms in Fig. 7, while

our optimized version only needs two, reducing the cost by roughly

75% for polar functions. The improvements carry over to volumetric

spherical basis, where both the r and θ transforms can be pruned.

The r components from Eqn. 38 to Eqn. 41 only need two rank-n
transformations, which saves 83% of the transforms. Force projec-

tions can be computed by reversing Fig. 7.

9.2 Efficient Advection Tensor Computation
Our basis functions were designed according to principle 2 from

§4, specifically so that Eqn. 58 simplifies to a series of 1D integrals.

Principle 1 further guarantees that the integrand only contains

products of trigonometric functions (sometimes weighted by an

integer-powered r ) so each 1D integral can be computed analyti-

cally. Elliptical and spheroid basis functions are exceptions, because

additional scale factors preclude an analytical solution. We instead

efficiently compute the advection tensor semi-analytically by pre-

computing an intermediate lookup table of numerical integrals.

Further details on this case are in the supplementary materials.

The basis functionsΦl ,Φm andΦn in Eqn. 58 pose a combinatoric

challenge. The five different functions for polar coordinates results

in 125 different combinations. We automate this process by first

computing the different tensor expression combinations in Math-

ematica. The expressions are then separated along each direction,
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and the products of trigonometric functions are reduced to summa-

tions using TrigReduce. The expressions are then parsed into C++,

and built-in functions evaluate the integrals of the trigonometric

functions. With the exception of the elliptical and spheroid cases,

we found the run-time cost of advection tensor computation to be

similar to those reported in Cui et al. [2018].

9.3 Implementation Details
We implemented our algorithm in C++ and used FFTW3 [Frigo

and Johnson 2005] for DCTs and DSTs. We multi-threaded with

OpenMP whenever possible, including during particle advection,

tensor contraction and basis transforms. Density was passively ad-

vected using Lagrangian particles integrated with RK4. The density

particles were advected in Cartesian coordinates to avoid the need

for a specialized density scheme [Hill and Henderson 2016; Huang

et al. 2020; Yang et al. 2019]. This was achieved by interpolating

the velocities from a parametric grid into Cartesian coordinates. In

all our examples, the basis functions are first uniformly sampled

along each wavenumber. During orthogonalization, we then reject

basis functions already well-represented by existing components in

order to ensure a well-conditioned transfer matrix A. This process
is described further in Appendix A.

10 RESULTS
We now present a variety of results obtained using spiral-spectral

fluid simulation over various geometries. Per-frame timing break-

downs of these examples are in Table 1, and were recorded on a

server with 10 physical cores running at 2.6GHz. The timing break-

downs are comparable to those in Cui et al. [2018]. Similarly, the

basis ranks are limited by the size of the advection tensors, shown

in Table 2. While previous works [Cui et al. 2018; Hasan et al. 2008;

Jones et al. 2016] suggest that significant compression of this tensor

is possible, we left this to future work.

Our work is is compatible with procedurally defined external

forces, which can be efficiently projected onto our basis functions.

The results are obtained by first iterating with a fast, low-rank sim-

ulation. The workflow is similar to rectilinear solvers, but we have

the additional feature that the user can start from the (somewhat

foreign) inviscid regime, and then gradually increase the viscosity.

Completeness Test. We first examine the completeness of basis

functions by attempting to reconstruct a spatial velocity field from a

conventional Eulerian (Stam [1999]-type) simulation using our polar

functions. As shown in Fig. 8, we start with three spatial velocity

fields from different Eulerian simulations inside a disc (leftmost col-

umn). We then project this field both into and out of our polar basis,

and measure the error. As the basis rank progressively increases

to s = 10K, Fig. 9 shows error becoming less than 1%. While some

residual error lingers around the border, this is due to the inability

of the Eulerian simulation to capture the curved boundary, not a

limitation of our basis. As expected, low-rank approximations of

the spatial velocity look like low-pass filtered versions of the field.

Planetary Flow. In Fig. 10, we use our codimensional basis to sim-

ulate planetary flow along the surface of a sphere. The simulation is

Fig. 8. Starting with a detailed flow from a Stam [1999]-type simulation (d),
our basis reconstructs the flow as its rank increases. From top to bottom,
the relative residual errors for the 10K examples (c) are: 0.6%, 0.1% and 0.1%.

Fig. 9. Error convergence of Fig. 8 as more basis functions are added. Note
the y-axis is a log scale.

(a) Planetary flow with horizontal forces.

(b) Planetary flow with Coriolis forces added as well.

Fig. 10. Planetary flow with s = 8000 basis functions. More turbulent
appearances are obtained with Coriolis forces.

computed with s = 8000 basis functions on a 1024 × 2048 grid. Visu-

ally turbulent patterns reminiscent of the surface of Jupiter emerge.
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Atmospheric flows are usually driven by pressure gradients [Yaeger

et al. 1986], but since our solve is pressure-free, we approximate its

effects by injecting horizontal forces that align with the color bands.

Coriolis forces are added in the bottom of Fig. 10, resulting in more

turbulent flows. Each simulation frame is computed in 3.87 seconds.

Fig. 11. Smoke Inside a Sphere with s = 6386 and Dirichlet boundaries.

Smoke Inside a Sphere. Next, we simulate smoke inside a sphere

with Dirichlet boundaries in Fig. 11. The simulation is computed

with s = 6386 on a 160 × 320 × 640 parametric grid aligned in the

r , θ , and ϕ directions. The motion is stimulated by injecting circular

forces along the interior of the sphere. Turbulent details appear as

smoke gradually fills the volume. Each frame takes 10.8 seconds.

Fig. 12. Smoke Inside Spheroids Oblate spheroid with width 1.0, height
0.6, and s = 6413.

Smoke Inside Spheroids. The spherical basis functions extend to

prolate and oblate spheroidal coordinates, enabling simulations in-

side spheroids. We show simulations (Fig. 12) with Dirichlet bound-

aries inside an s = 6413 oblate spheroid at 11.86s per frame. Addi-

tional spheroidal geometries are in the supplementary video.

Dropping Balls. We show that spiral-spectral fluids support ob-

stacle interactions by dropping rigid balls into a s = 11096 fluid.

The obstacle interacts with the fluid using penalty forces similar

to Cui et al. [2018] and De Witt et al. [2012]. All boundaries are

set to Dirichlet. As the highest-rank simulation we attempted, this

example took 38.28 seconds per frame.

Cylindrical Tornado. We show a fire tornado in Fig. 19 swirling

inside a cylindrical domain with s = 6586. Neumann boundaries are

implemented along the top and bottom, allowing the fire to flow in

and out, while the vertical wall is Dirichlet. We inject heat particles

that linearly cool, and their temperatures are rendered as blackbody

emitters. Buoyancy forces and a constant circulation force drives

the simulation, which takes 11.98s per frame.

Plume in a Cylinder. In Fig. 15, we compare cylindrical flows us-

ing our methods to the conventional Eulerian implementation in

Mantaflow [Thuerey and Pfaff 2018]. As in §8.2, both simulations

were given similar wall-clock running times to facilitate the com-

parison. Both simulations produce similar overall motions, but the

Fig. 13. Dropping Balls into s = 11096 cylindrical basis functions. From
top row to bottom row, the viscosities are ν = 0.003, ν = 0.001, ν = 0.0001.
All boundaries are Dirichlet.

Fig. 14. Tokamak Flow with s = 6269 volumetric, toroidal basis functions
and Dirichlet boundaries.

qualitative appearance of our approach is distinct, and provides a

new “look” for artists to explore. In Fig. 16, more details appear in

a higher-rank plume (s = 15381). In this case, the advection tensor

hits the memory limit.

Tokamak Fluid. In Fig. 14, we approximate fluid traveling around

a tokamak (fusion reactor) using a s = 6269 volumetric, toroidal

basis. Heat particles are injected along the centerline and gradually

cool down over time. To approximate a plasma-like visual effect (we

do not solve the full magneto-hydro-dynamic equations), the heat

particles are rendered as blackbodies with a bluish tint. A rotating

force drives the simulation, and turbulence sheds off the centerline,

creating the details highlighted in the inset. The simulation takes

6.74s per frame.
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Fig. 15. Plume Cylinder. Top row: Smoke rising past a sphere using
Mantaflow [Thuerey and Pfaff 2018]. Bottom: Same scene with our method,
s = 3397, in cylindrical coordinates. The overall motions are similar, while
ours achieves a novel look.

Fig. 16. A plume rising in cylindrical coordinates with s = 15381.

(a) Dirichlet Boundary (b) Neumann Boundary

Fig. 17. Sphere with s = 6386. Top row: With Dirichlet boundaries, smoke
flows down the sides. Bottom row: In the same simulation with Neumann
boundaries, it flows out of the domain.

Dirichlet/Neumann Spheres. In Fig. 17, we compare Neumann and

Dirichlet boundary conditions, by simulating a flame rising from

the bottom of a sphere with s = 6386. Heat is injected at the bottom

of the sphere and rises from buoyancy. The fluid rebounds off the

spherical ceiling with Dirichlet boundaries, and flows down the

side. With Neumann boundaries, fluid can freely exit and enter. As

a result, the fluid spreads more widely throughout the domain. The

Dirichlet and Neumann simulations respectively take 9.7s and 10.2s

per frame. We use homogeneous Neumann and Dirichlet boundary

conditions in all our examples.

Fig. 18. Tie-Dye Torus with s = 7175 codimensional basis functions. Col-
ored bands are initialized on the surface, and then pulled with gravity.

Tie-Dye Torus. In Fig. 18, we simulated s = 7175 codimensional,

toroidal basis functions. Colored bands are initialized on the surface

and then driven by gravity. Very small viscosity is used, which

resulted in many small scale vortices, as shown in the inset.

11 CONCLUSION AND FUTURE WORK
We have presented the spiral-spectral method for simulating fluids

over radial domains. Using our framework, we are able to generate

basis functions, compute advection tensors, and simulate dynamics

over these domains. We share the limitation from previous work,

where advection tensor size limits the spectral resolution of the

simulations. Other works have also shown that tensors [Cui et al.

2018; Hasan et al. 2008] and general fluid phenomena [Jones et al.

2016] can compress dramatically, so a detailed investigation of this

could yield further scalability.

Another potential direction is the use of spiral-spectral spheres as

enrichment particles for existing simulations. In contrast to existing

noise-based approaches [Narain et al. 2008; Pfaff et al. 2009; Selle

et al. 2005], a detailed physics model is built in. Further work would

be needed to account for phenomena such as vortex stretching.

Finally, the extension of this spectral approach to other parametric

surfaces is an interesting future direction, but it remains to be seen

if such approaches could remain analytical.
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Fig. 19. Cylindrical tornado example with s = 6586 basis functions. Neumann boundary conditions are enabled on the top and bottom. Heat particles are
gradually injected at the bottom, and rendered with blackbody radiation.

Table 1. Per-frame timing breakdown of our algorithm across all the different examples. The parametric grid‡ is discretized along the r , θ and ϕ coordinates,
and basis transforms occur on this grid. The swirling smoke examples are simulated inside a unit sphere∗, a prolate spheroid†, and an oblate spheroid⋆.

Scene

Grid
‡

Basis Tensor Linear Diffusion

DCT/DST

Density

Total

Resolution Dimension Contraction Solver Solver Advection

Planetary Flow 1024 × 2048 8000 2.08 secs 0.85 secs 0.04 secs 0.16 secs 0.74 secs 3.87 secs

Swirling Smoke 160 × 320 × 640

6386
∗

2.20 secs 0.56 secs 0.05 secs 4.97 secs 3.02 secs 10.80 secs

6384
†

2.02 secs 0.70 secs 0.05 secs 4.28 secs 3.02 secs 10.07 secs

6413
⋆

2.53 secs 0.79 secs 0.05 secs 4.92 secs 3.57 secs 11.86 secs

Cylinder Tornado 150 × 300 × 600 6586 2.43 secs 1.33 secs 0.05 secs 4.06 secs 4.11 secs 11.98 secs

Dropping Balls 160 × 320 × 640 11096 3.85 secs 1.43 secs 0.15 secs 30.20 secs 2.65 secs 38.28 secs

Tokamak Flow 128 × 256 × 512 6269 2.06 secs 0.44 secs 0.05 secs 1.87 secs 2.32 secs 6.74 secs

Tie-Dye Torus 1024 × 2048 7175 1.68 secs 0.76 secs 0.06 secs 0.25 secs 1.52 secs 4.27 secs

Plume in a Cylinder 80 × 160 × 320
4930 0.45 secs 0.20 secs 0.01 secs 0.80 secs 0.22 secs 1.68 secs

15381 6.32 secs 3.31 secs 0.30 secs 4.28 secs 3.02 secs 17.23 secs

Table 2. The advection tensor size across different examples. The geometry
marked by ∗ is computed with Neumann boundaries on both endcaps, while
the geometry marked by † is computed with all-Dirichlet boundaries.

Scene Geometry

Basis Tensor

Dimension Size

Planetary Flow sphere surface 8000 34.7 GB

Swirling Smoke

sphere 6386 29.8 GB

prolate spheroid 6384 41.1 GB

oblate spheroid 6413 39.7 GB

Cylinder Tornado cylinder
∗

6586 73.2 GB

Dropping Balls cylinder
†

11096 30.7 GB

Plume in a Cylinder

cylinder
†

4930 5.9 GB

cylinder
†

15381 74.1 GB

Tokamak Flow torus 6269 43.7 GB

Tie-Dye Torus torus surface 7175 17.3 GB
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A GRAM-SCHMIDT PROCESS
We describe an analytic version of the modified Gram-Schmidt

process [Golub and Van Loan 2012] that we use in §7.1. The process

is as follows. Above, the dot products

〈
φ j−1
k , vj

〉
are computed

analytically. These coefficient are stored in the triangular transfer

matrix A, analogous to the R matrix in a QR factorization, and

transforms the input basis functions to orthogonality:

A =



1

|Φ1 |
0 0 . . . 0
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1
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2
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(65)

The norm inverses appear along the diagonal, and to keep A well-

conditioned, we set a threshold τ to filter basis function with very

small remainders. We experimentally found τ = 0.2 worked well.

With no filtering, i.e., τ = 0 in the planetary flow example, 69 more

basis functions are retained, resulting in s = 8069. However, the
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Algorithm 1 Gram Schmidt Orthogonalization

Input: Set of analytical basis functions {Φ1, · · · ,Φk }

Output: Set of orthogonal basis functions {v1, · · · , vi }
1: procedure Orthogonalization
2: v1 ←

Φ1

|Φ1 |

3: i ← 1

4: for k from 2 to n do
5: φ0

k ← Φk
6: for j from 1 to i do
7: φ j

k ← φ j−1
k −

〈
φ j−1
k , vj

〉
vj

8: end for
9: if |φi

k | > τ then
10: i ← i + 1

11: vi ←
φ i
k
|φ i

k |

12: end if
13: end for
14: end procedure

linear solver becomes five times slower because the transfer matrix

A becomes less well-conditioned. We verified that the algorithm

stably produces a A that diagonalizes the inner product matrix to

within near-floating-point precision (10
−12

).

In practice, we found A to be block-sparse, because most basis

functions are already orthogonal, e.g. the bases Φ0

∗ (Eqn. 14) and

Φ1

∗ (Eqn. 15) are orthogonal. Within each set, basis functions are

orthogonal if they have different wavenumber along the θ direction.

This is because the following integrals are computed along θ :∫
2π

θ=0
sin(i2θ ) sin(j2θ ) = πδi2, j2

∫
2π

θ=0
cos(i2θ ) cos(j2θ ) = πδi2, j2 .

Therefore, any basis functions with different wavenumbers along

θ are orthogonal. In practice, we group basis functions by their

wavenumbers along θ , and orthogonalize within each group. The

transfer matrixA is then assembled from the sub-matrices from each

group. This approach extends to volumetric bases as well, and we

observed that only 0.1% to 0.5% entries of matrix A were non-zero.

B EXTENSION TO ELLIPTIC COORDINATES
We extend the polar basis functions from §5 to elliptical coordinates.

First, we extend the polar coordinates in Eqn. 9 to elliptical,

px = a
√
1 + c2r2 cos(θ ) py = acr sin(θ ), (66)

where a =
√
1 − b2, the length of major axis is 1, the minor axis

is b, the scalar c = b/a, and the parameter ranges are r ∈ [0, 1],
θ ∈ [0, 2π ). This converges to polar coordinates as b → 1, and

allows us to find elliptic basis functions that exactly converge to the

polar basis functions. The divergence operator becomes

∇ · s =
1

hrhθ

[
∂

∂r
(srhθ ) +

∂

∂θ
(sθhr )

]
, (67)

where the scale factors are

hr = ac
h

√
1 + c2r2

hθ = ah, (68)

and h =
√
c2r2 + sin2(θ ).

As b → 1, the hθ becomes r and hr becomes 1, which establishes

that the elliptic divergence operator (Eqn. 67) converges to the polar

case (Eqn. 10). We use Ψ to denote the elliptic basis functions. Given

a divergence-free basis Φ in polar coordinates, it can be converted

to the elliptic functions Ψ as follows:
Ψr =

cr
h Φr ,

Ψθ =
√
1+c2r 2
h Φθ .

(69)

By inserting Ψr and Ψθ as sr and sθ into Eqn. 67, the elliptic scale

factors hr and hθ canceled out, and leave the polar divergence

operator with Φr and Φθ . Thus, it should be zero because Φr and

Φθ are divergence-free in polar coordinates. The only exception is

the enrichment function Ψ2

∗, where the following basis is preferred:{
Ψ2

r = 1

h

√
1 + c2r2 cos(i1πr ) sin(θ ),

Ψ2

θ = 1

h

(
cr cos(i1πr ) −

i1
c π (1 + c

2r2) sin(i1πr )
)
cos(θ ).

(70)

This is because the velocity transform in elliptical coordinates is
ux

uy

 =


cr cos(θ )
h −

√
1+c2r 2 sin(θ )

h
√
1+c2r 2 sin(θ )

h
cr cos(θ )

h



ur

uθ

 , (71)

and when i1 = 0, Eqn. 70 evaluates to Ψ2

r =
1

h

√
1 + c2r2 sin(θ )

and Ψ2

θ =
1

h cr cos(θ ). By transforming the velocity to Cartesian

coordinates with Eqn. 71, we obtain a y-translation: ux = 0, uy = 1.

Therefore, it is able to represent the same translation motion as Φ2

∗

in Eqn. 20, which is not possible by directly applying Eqn. 69 to Φ2

∗

in polar coordinates.

Limitations. Due to the scalar c appearing in h, the basis functions
depend on the shape of the ellipse. Thus, the dot products in the

advection tensor must be recomputed if c changes. Another limi-

tation is that velocity derivative conditions at the border become

approximate. A Neumann boundary can be achieved in polar co-

ordinates by using an integer wavenumber offset of 1/2 in Φ0

∗ from

Eqn. 14, but this is no longer holds in elliptical coordinates, because

the derivative of Ψ0

r from Eqn. 69 becomes:

Ψ0

r =
cr sin(i1πr ) sin(i2θ )

h
, (72)

∂Ψ0

r
∂r
=

[
−
c3r2 sin(i1πr )

h3
+
ci1πr cos(i1πr )

h
+
c sin(i1πr )

h

]
sin(i2θ ).

(73)

Both sin(i1πr ) and cos(i1πr ) appear in the derivative, so it cannot

be constrained to zero exactly, but remains bounded. If we assign

then i1 ∈ Z
+ − 1/2, then cos(i1πr ) vanishes at r = 1:

∂Ψ0

r
∂r
(r = 1) =

c sin2(θ )
3

√
c2 + sin2(θ )

sin(i1π ) sin(i2θ ). (74)

The absolute value of the derivative is bounded by:���� ∂Ψ0

r
∂r
(r = 1)

���� ≤ c sin2(θ )
3

√
c2 + sin2(θ )

. (75)

The maximum value is obtained at sin
2(θ ) = 2c2 when 2c2 ≤ 1,

where above equation evaluates to 2/
3
√
1 + 2 ≈ 0.3849. When 2c2 >
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1, the maximum is obtained at sin
2(θ ) = 1, where the above equation

evaluates to c/
3
√
c2 + 1. Thus, the velocity derivative is bounded

between ±0.3849. This approximation only applies to Neumann

conditions; Dirichlet are satisfied exactly.
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