
EUROGRAPHICS 2020 / U. Assarsson and D. Panozzo
(Guest Editors)

Volume 39 (2020), Number 2

Fast and Robust Stochastic Structural Optimization

Qiaodong Cui,1 Timothy Langlois,2 Pradeep Sen,1 Theodore Kim3

University of California, Santa Barbara1 Adobe Research2 Yale University3

Figure 1: A raven model optimized using our method. From left to right: The initial object, the optimized density field, the final shape, and a
cut-away view of the final shape. Our method automatically reinforces the corner (commissure) of the beak, circled in red, which is likely to
break under real-world impacts. Material is subtracted from regions that are unlikely to experience impacts.

Abstract
Stochastic structural analysis can assess whether a fabricated object will break under real-world conditions. While this ap-
proach is powerful, it is also quite slow, which has previously limited its use to coarse resolutions (e.g., 26×34×28). We show
that this approach can be made asymptotically faster, which in practice reduces computation time by two orders of magnitude,
and allows the use of previously-infeasible resolutions. We achieve this by showing that the probability gradient can be com-
puted in linear time instead of quadratic, and by using a robust new scheme that stabilizes the inertia gradients used by the
optimization. Additionally, we propose a constrained restart method that deals with local minima, and a sheathing approach
that further reduces the weight of the shape. Together, these components enable the discovery of previously-inaccessible designs.

1. Introduction

Recently, a wide range of computational techniques have been de-
veloped to assist in the design of objects manufactured using ad-
ditive fabrication (see, e.g., excellent surveys of the state-of-the-
art [LEM∗17, MS19]). One key concern is the robustness of the
manufactured object (i.e., the conditions in which it will break),
and various failure analysis algorithms have been developed to es-
timate the failure cases of the object in order to improve its design.

Traditionally, failure analysis is performed for worst-case sce-
narios, and while such analyses are critical in certain scenarios
(e.g., bridge construction), they can be overly conservative in oth-
ers, such as figurine design. In these (more common) situations, it
is more realistic to ask whether an object is robust in real-world
situations, such as being dropped on the floor or down a flight of
stairs. In this case, reinforcing portions of the object that are un-
likely to experience an impact because they are already shielded by
more robust regions is clearly sub-optimal. Unlikely mechanical
scenarios should not artificially constrain the design space, and the
manufactured designs should be optimized for the “common case.”

Along these lines, Langlois et al. [LSD∗16] recently proposed a
Figure 2: Photos of the 3D printed results from the raven in Fig. 1.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

stochastic structural analysis method that used a rigid body sim-
ulator to sample a more realistic space of real-world impacts and
construct a probability map of predicted failures. This probability
map was then incorporated as a constraint into a topology optimiza-
tion, and used to solve a context-aware inverse design problem that
produced geometrical models more robust to realistic impacts. Un-
fortunately, the method is quite computationally intensive, where
even a single optimization step over a small 26× 34× 28 model
takes over an hour to compute .

We observe that this computational expense arises for two main
reasons. First, computing the probability gradients is quadratic in
the number of elements. Second, the inertia gradient that arises
from the rigid body simulation is computed using a finite difference
scheme that leads to instabilities, which in turn negatively impacts
the convergence of the optimization. In this paper, we present an ap-
proach that is both asymptotically faster and more numerically ro-
bust than Langlois et al. [LSD∗16]. We achieve both of these goals
directly; no approximation is applied to the original algorithm. In
the first case, we show that a careful analysis of the probability gra-
dient can yield a computation that is only linear in the number of
elements. In the second case, we use a combination of Gaussian
Mixture Models and an alternate central-differencing method to ar-
rive at a more stable version of the inertia gradient.

Even with these improvements, the optimization can still stall at
local minima. We therefore introduce a constrained restart method
that is able to make further progress and discover interesting new
structures that were otherwise inaccessible to the original algo-
rithm. Finally, we show that additional progress can be made by
assuming that a thin sheath that is beyond the resolution of the nu-
merical simulation will be printed along the exterior of the object.
Our individual technical contributions are as follows:

• Asymptotically faster computation of probability gradients
• A robust scheme for computing inertia gradients that stabilizes

the optimization search direction
• A constrained restart strategy that allows the global optimization

to climb out of local minima
• A sheathing approach that robustly removes additional mass

from the final design

Together, these components comprise a stochastic structural opti-
mization method that is orders of magnitude faster than Langlois et
al. [LSD∗16], able to achieve previously-impractical resolutions,
and capable of discovering previously-inaccessible designs.

2. Related Work

Since structural optimization was introduced [Ben89, BS95], it
has attracted lots of attention in computer graphics. Traditionally,
topology optimization involves minimization of compliance. There
are many works in computer graphics following this approach,
e.g., [WWY∗13, LHZ∗18, LSZ∗14]. However, compliance mini-
mization can overfit to one loading condition, and has difficulty
predicting whether objects will fail under realistic conditions.

Instead of minimizing compliance, minimizing the object’s
weight subject to a stress constraint offers a better guarantee of
the robustness of the object. For example, Lee et al. [LJM12] uses

a constraint on the yield stress and minimizes the weight of the ob-
ject. Similarly, Ulu et al. [UMK19] optimizes the thickness of the
shell to minimize the weight, subject to a constraint on the yield
stress. Many of these methods use prescribed loadings. This can
be useful in some particular cases, e.g., designing a bridge, where
the loading can be prescribed in advance. However, in many other
cases, the loading might be unknown beforehand.

To capture uncertainty, stochastic finite element analysis has
been extensively studied in the engineering community. Ste-
fanou [Ste09] provides an excellent overview. There are two broad
classes of methods: 1) the perturbation approach, which uses a Tay-
lor series expansion of the system matrix and solution [LBM86],
and 2) the spectral stochastic finite element method, which rep-
resents each solution quantity with a series of random Hermite
polynomials [GS91]. Monte Carlo simulation (MCS) [PP96] can
be used in conjunction with these two methods, which models ran-
domness by solving a deterministic problem many times using dif-
ferent samples of the random variables. These methods are very
general, and can consider uncertainties in the loading, geometry,
and material behavior of the problem. In our case, we care only
about uncertainty in loading conditions, so do not need the com-
plex, expensive machinery to approximate randomness in the sys-
tem matrix provided by these methods. Our approach (and the pre-
vious approach we accelerate [LSD∗16]) is akin to an MCS ap-
proach using model reduction to reduce the computational load.

To address uncertainty in the graphics community, worst case
structural analysis was introduced by Zhou et al. [ZPZ13]. The
method computes a worst case loading scenario where it produces
the worst possible stress distribution in the object. Along this line,
several different works use the worst case loading to optimize the
structure [UMK17, PRZ17, SZB18]. However, it is unknown how
often the worst cast loading will be present in a realistic scenario,
such as a figurine falling and hitting the ground.

To address this limitation, Langlois et al. [LSD∗16] presented a
method where the loading of the object was computed from a rigid
body simulator that closely mimicked realistic loadings. The work
also introduced semantically meaningful failure probabilities that
better reflected real-word object failures. The work also presented
a structural optimization scheme where the weight of the object
was minimized under failure probability constraints. Still, this op-
timization scheme remained expensive due to the computation of
the failure probability gradients.

Our work immediately follows this line. We aim to optimize
stochastic structural optimization through three specific contribu-
tions: acceleration of the gradient computation, a more robust prob-
ability gradient formulation, and a restart strategy to overcome non-
optimal local minima during optimization.

3. Stochastic Structural Optimization

Here we briefly summarize the stochastic structural optimization
technique of Langlois et al. [LSD∗16].

Notation: We use unbolded lower case for scalars, bolded lower
case for vectors (ωωω), and bolded upper case for matrices (K). When
an indexing operation results in a scalar, we unbold the result. We
use a colon to denote double-contraction between matrices.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

Finite Element Method (FEM): We use a hexahedral uniform grid
as our FEM discretization and compute the displacement (u) and
element Cauchy stresses (σσσ) that arise from an external force (f):

Ku = f
σσσ = CBu.

(1)

Above, K ∈ R3n×3n is the stiffness matrix, σσσ ∈ R6m is a vector of
per-element Cauchy stresses, C ∈ R6m×6m is a constitutive matrix,
and B ∈ R6m×3n maps u to Cauchy strains. Stresses and strains are
evaluated at the center of each voxel. The quantity m is the total
number of mesh elements, and n is the number of vertices.

Using the per-element stress,

σσσe =

σ11 σ12 σ31
σ12 σ22 σ23
σ31 σ23 σ33

 (2)

we compute a scalar, per-element von Mises stress:

S(σσσe) =
1
2

[
(σ11−σ22)

2 +(σ22−σ33)
2 +(σ33−σ11)

2
]
+

3
(

σ
2
23 +σ

2
31 +σ

2
12

)
.

(3)

A yield stress σ̂ completes our failure criteria. An element fails
if S(σσσe) > σ̂, and we define “object failure” as the failure of any
individual element.

Stochastic Failure Probability: Prior to optimization, we need to
estimate an object’s failure probability under various force distri-
butions. Langlois et al. [LSD∗16] estimated real-world loadings
by using a rigid-body simulation to generate force samples. For
each sample, they then computed the maximal von Mises stress
across the whole object, and then estimated a probability distri-
bution function (PDF) of maximal stresses. The object fails if its
maximal stress is greater than the yield stress, so the survival prob-
ability is computed by integrating the PDF from 0 to σ̂. The failure
probability is one minus the survival probability.

Many force samples (≈ 5000) are needed to accurately represent
the PDF, so principal component analysis (PCA) is used to reduce
its computational complexity. We denote each force sample as fi,
where i = 1 . . .ns, and ns is the total number of samples. In lieu of
performing an FEM analysis for each sample, they compute a re-
duced force basis, F̄ ∈ R3n×r, where r is the number of principal
components. Each sample is then represented with a reduced co-
ordinate, ααα

i ∈ Rr, where fi ≈ F̄ααα
i. The element stresses for each

sample i can then be computed as:

σσσ
i = CBK−1F̄ααα

i. (4)

By pre-solving CBK−1 for each column in F̄, significant savings
can be achieved when r� ns (e.g. r ≈ 100).

The normalized, whole-object stress for each fi is then:

si =
1
σ̂

max
e

(S(σσσi
e))

{
e = 1 . . .m
i = 1 . . .ns

(5)

Using all the stress samples si, we can construct a probability dis-
tribution function (PDF) p(s) for the whole-object stress. The cor-
responding cumulative distribution (CDF) function is denoted as

P(s). The probability of the object survival P(s < 1) is then:

P(s < 1) =
∫ 1

0
p(s)ds. (6)

Topology Optimization: The failure probability is then used as a
constraint in a topology optimization that adds or subtracts materi-
als from some initial design. The overall goal is to reduce the final
object weight while satisfying a user defined failure probability Θ:

min
m

∑
e=1

ωe

s.t. P(s < 1)> 1−Θ.

(7)

Above, ωωω is a vector of element densities, such that ∀e ωe ∈
[0,1], which is usually initialized to be fully filled (∀e, ωe = 1).
Eqn. 7 is optimized using the Method of Moving Asymptotes
(MMA) [Sva02], which requires both the object and constraint gra-
dients. The objective gradient is straightforward to efficiently com-
pute, but the constraint gradient is a major bottleneck because the
existing approach is quadratic in the number of elements. We will
show that it is possible to reduce its complexity to linear.

4. Our Method

First, in §4.1, we analyze the complexity of computing the prob-
ability gradients. By carefully leveraging the structure of the
problem, we found the quadratic complexity of previous meth-
ods [LSD∗16] can be reduced to linear with respect to the num-
ber of elements. In practice, this results in a roughly two-order of
magnitude speedup.

Next, in §4.2, we show that the existing approach leads to unreli-
able probability gradients. This negatively impacts the convergence
of the optimization and, in turn, the final design. We show how to
stabilize these gradients, which leads to higher-quality shapes.

The optimization can still stall at local minima. To address this,
we introduce (§4.3) a constrained restart method that identifies and
constrains promising structures when the optimization stalls, and
applies a perturbation to bump the state out of its local minimum.
Finally, we make additional progress by allowing the outer shell of
the object to erode, and later restore the visual appearance of the
object by adding a lightweight sheath as a post-process.

4.1. Asymptotic Analysis and Acceleration

First, we will analyze the existing method [LSD∗16] to show that
it runs in O(m2). Then we will show that an identical computation
can be done in O(m).

4.1.1. The Previous Quadratic Method

We begin by expanding the derivative of p(s) from Eqn. 6 in terms
of si using the chain rule:

∂P(s < 1)
∂ωωω

=
∫ 1

0

ns

∑
i=1

∂p
∂si

∂si

∂ωωω
ds. (8)

The ∂si

∂ωωω
term is computed by replacing the discontinuous max func-

tion in Eqn. 5 with a smoother Lp norm. The density term ωe is also

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

multiplied beforehand to avoid singularities as shown in [LJM12],
si ≈ ||

√
ωi

eS(σσσi
e)||p/σ̂, yielding:

∂si

∂ωωω
=

1
σ̂

(
m

∑
e=1

√
ωi

eS(σσσi
e)

p

) 1
p−1

m

∑
e=1

(

√
ωi

eS(σσσi
e))

p−1

(
1

2
√

ωi
e

S(σσσi
e)+

∂S
∂σσσi

e

∂σσσ
i
e

∂ωωω

) (9)

Combining equation 9 with equation 8, we obtain:

∂P(s < 1)
∂ωωω

=
ns

∑
i=1

ai

(
bi +

(
∂σσσ

i

∂ωωω

)T

ci
)

(10)

where

ai =
∫ 1

0

∂p
∂si ds

1
σ̂

(
m

∑
e=1

√
ωi

eS(σσσi
e)

p

) 1
p−1

bi =
m

∑
e=1

(

√
ωi

eS(σσσi
e))

p−1S(σσσi
e)/(2

√
ωi

e)

ci
e = (

√
ωi

eS(σσσi
e))

p−1 ∂S
∂σσσi

e

∂S
∂σσσi

e
can be computed from equation 3. Next, from equation 4 we

compute:

∂σσσ
i

∂ωωω
=−CBK−1 ∂K

∂ωωω
Ūααα

i︸ ︷︷ ︸
I

+CBK−1 ∂F̄
∂ωωω

ααα
i︸ ︷︷ ︸

II

+CBŪ ∂ααα
i

∂ωωω︸ ︷︷ ︸
III

(11)

where Ū = K−1F̄. Here, I computes the derivative of the stiffness
matrix, II computes the gradient of the reduced force basis, and III
computes the gradient of the reduced force coordinates.

Combining equations 10 and 11, we obtain the final probability
derivative, which can be computed as:

∂P(s < 1)
∂ωωω

= (K−1YŪT) :
∂K
∂ωωω

+(K−1Y) :
∂F̄
∂ωωω

+x+ t (12)

where

Y =
ns

∑
i=1

BT CT ci⊗ααα
i t =

ns

∑
i=1

aibi

x =
ns

∑
i=1

∂ααα
i

∂ωωω
ŪT BT CT ci.

The main complexity in Eqn. 12 lies in the second term, (K−1Y) :
∂F̄
∂ωωω

. We show in Appendix A for a single element e, the force deriva-
tive on the right of the double-contraction can be written as

∂F̄
∂ωωωe

= F̄We. (13)

We ∈ Rr×r is a dense matrix that has to be evaluated for each el-
ement. A naïve evaluation for one element then becomes mr2 be-
cause F̄ ∈ R3n×r and m∝ n due to the uniform grid discretization.
Computing the force derivatives for all samples is then O(m2r2).

4.1.2. Our Linear Method

We first observe that in equation 13, the per-element force basis
matrix F̄ is fixed, and only the smaller We ∈ Rr×r ever changes.
Second, we observe that the final quantity (K−1Y) : ∂F̄

∂ωωω
is all that

matters; the per-element intermediate ∂F̄
∂ωωωe

is not strictly required.

Therefore, if we pre-contract F̄ with K−1Y, we obtain a smaller
matrix, F̄T K−1Y ∈ Rr×r. Each element can then be computed as
F̄T K−1Y : We, which is only O(r2) per element.

Specifically, each element must compute the product

ge = K−1Y : (F̄We), (14)

where ge is the entry of the second term in Eqn. 12 for element e.
Both Z = K−1Y and F̄ are static, per-element, R3n×r matrices that
we use to rewrite ge as

ge = ∑
i, j
(Z)i j(F̄We)i j = ∑

i, j,k
Zi jF̄ikWk je = ∑

i, j,k
F̄ikZi jWk je

= (F̄T Z) : We.

(15)

Since F̄T Z ∈ Rr×r is fixed for all e, we can precompute it in
O(mr2) time. At runtime, an O(r2) contraction is performed over
m elements, yielding an O(mr2) overall running time.

So far, we have only examined the derivative of the force basis
in Eqn. 13. However, naïvely evaluating We also takes O(m2) time.
We show in Appendix B that this can also be reduced to O(m) by
leveraging matrix sparsity and similar pre-computations.

We show in Table 1 the running time of computing the total prob-
ability gradients using the previous quadratic method (estimated)
and our linear method. Our method is asymptotically faster, and
accelerates this stage of the method by two orders of magnitude,
effectively removing it as the bottleneck of the method.

Time (s)

Resolution [LSD∗16] Our Method Speedup

28×32×36 1.84† 0.041 44.9×

28×44×28 6.18† 0.044 140×

40×64×60 41.7† 0.128 326×

Table 1: Running time of Eqn. 13 using the quadratic method of
Langlois et al. [LSD∗16] and our linear method. †Estimated time.

4.2. Stabilizing the Inertia Gradients

4.2.1. Previous Method

We examine the relevant term from Eqn. 12,

x =
ns

∑
i=1

∂ααα
i

∂ωωω
ŪT BT CT ci, (16)

that measures how changing the voxel densities ωωω influence the
rigid body force samples ααα

i. The previous method [LSD∗16] eval-
uates this term using finite differences.

Given ns samples ααα
i ∈Rr, we assume each entry of ααα

i is sampled

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

from a 1D PDF, and take its finite difference over that distribution.
The jth entry of each force sample α j is denoted α. We assume α

is a random variable and that α
i
j is drawn from the PDF c(α).

Instead of computing a finite difference for the sample α
i
j, we

perform a finite difference over its distribution. For any α, we can
compute its CDF as C(α), and retrieve α

i
j by sampling its inverse

using α
i
j = C−1(u), where u is a uniform random variable. Using

the properties of the CDF, we obtain:

∂C(C−1(u))
∂ωωω

=
∂u
∂ωωω

= 0

∂C(C−1(u))
∂ωωω

=
∂C
∂α

∣∣∣∣
αi

j

∂C−1

∂ωωω

∣∣∣∣∣
u

+
∂C
∂ωωω

∣∣∣∣
α

= 0.
(17)

By manipulating Eqn. 17, we obtain the derivative of α:

∂α

∂ωωω
=

∂C−1

∂ωωω

∣∣∣∣∣
u

=− 1
c(α)

∂C
∂ωωω

∣∣∣∣
α

. (18)

We insert α = α
i
j into Eqn. 18 to compute the gradient for each

random sample. Therefore, an important step in computing the in-
ertia gradients is building the distributions C(α) and c(α) over the
samples α

i
j , where i = 1 . . .ns.

Langlois et al. [LSD∗16] computed C(α) and c(α) by fitting a
uniform 1D finite element grid over the samples, which represents
them as a sum of basis functions: c(α) = ∑

k
i=1 aiψi(α). Here, k

is the number of elements of this 1D finite element grid, ai is a
shape coefficient, and ψi(α) is a symmetric hat function of element
i. A Galerkin method is then used to solve for ai. However, this
approach can fit the data poorly. In the top of Fig. 3, we show the
PDF c(α) that results from this approach using n elements. For a
small n, the histogram is fit poorly. As n increases, ringing artifacts
appear. This leads to instabilities when computing 1

c(α) in Eqn. 18
because the ringing artifacts can cause the PDF to become negative.

4.2.2. Stabilized Inertia Gradients

We use Gaussian Mixture Models (GMMs) to address this problem.
GMMs are widely used to capture discrete distributions [Bis06],
and we found that they yield results superior to the FEM approach.

We first expand c(α) using a set of Gaussians:

c(α) =
k

∑
i=1

πiN (α |µk,σk) (19)

where k is the number of Gaussians, πk is a weight, and
N (α |µk,σk) is a Gaussian with mean µk and variance σk. The pa-
rameters, πk,σk,µk, can be computed from α

i
j using expectation

maximization [Bis06], and we found that k = 10 usually yields
good results. This leads to the superior distribution representations
we show in the bottom of Fig. 3.

Returning to Eqn. 18, ∂C
∂ωωω

is also evaluated using finite differ-
ences. We assume that all the potential contact positions of the
rigid-body lies on the surface of the object. So the rigid-body can
be parameterized by its mass, center of mass, and moment of iner-
tia. As a result, α

i
j and its CDF C(α) can be parameterized using

Figure 3: The PDF constructed from an FEM grid fits the data
poorly and leads to unstable probability gradients. The distribution
has a long tail; we have zoomed into a portion of the x axis. Our
GMM fit does not exhibit these artifacts.

a total of 10 variables. Denoting the parameters as Mi, i = 1 . . .10,
the finite difference is computed as:

∂C
∂ωωω

∣∣∣∣
α

=
10

∑
i=1

∂C
∂Mi

∣∣∣∣
α

∂Mi

∂ωωω
. (20)

The ∂Mi
∂ωωω

is straightforward, and we use a centered difference for
∂C
∂Mi

:

∂C
∂Mi

∣∣∣∣
α

=
1
2

C(Mi +∆M)|α−C(Mi−∆M)|α
∆M

. (21)

Evaluating the above equation involves two extra rounds of rigid
body simulation with Mi +∆M and Mi−∆M perturbations applied
to each parameter, for a total of 20 rounds.

The resulting probability distribution leads to much stabler iner-
tia gradients, as shown in Fig. 4. In that figure, we show the prob-
ability gradients from the first three frames of the optimization as
well as two frames near the end. The element densities change only
slightly during these frames, and yet the FEM-based gradients os-
cillate wildly. Using our method, the gradient becomes very stable,
and greatly improves the convergence of the optimization (Fig. 12).

4.3. Constrained Restart Strategy

Eqn. 7 has a non-linear constraint and a large number of variables,
so we use the Method of Moving Asymptotes (MMA) [Sva02] as
our optimization algorithm. The non-linearity of the probability
constraint causes the optimization to often fall out of the feasible

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

Iteration: 1 Iteration: 2 Iteration: 3

...

Iteration: 70 Iteration: 71

(a) Previous, unstable probability gradients

Iteration: 1 Iteration: 2 Iteration: 3 Iteration: 70 Iteration: 71

...

(b) Our stable probability gradients

Figure 4: Probability gradients from the first three optimization
frames and two frames near the end. The previous method changes
wildly, even when the underlying densities change very little. Our
method changes slowly, in step with the density changes.

region. MMA can recover, but often at the cost of oscillatory be-
havior that converges to sub-optimal local minima [Sva02]. One
popular technique for addressing this well-known problem is the
Solid Isotropic Material with Penalization (SIMP) model [BS95],
but we found it to be insufficient for our case (see Appendix D).

Iteration: 59

Figure 5: Left: The object weight and survival probability during
the optimization. Right: The local optimum at iteration 59.

Instead, we found the following constrained restart method to
be effective, which can be viewed as a form of either block-cyclic
reduction [GVL13] or sand-filling [BMS15]. We observe that when
the optimization stalls, it usually has found a preliminary, but
promising, reinforcement structure. Therefore, we perform multi-
ple optimization passes where the promising structures from the
previous iteration are used as an initial guess.

We isolate these structures by applying threshold c to the current
solution and constraining the results to ωe = 1 in Eqn. 7. Next, we
add a perturbation to push the global solution state out of its current
local minimum. We compute extension density field βββ of the stalled
solution ωωω

i−1 and then use min(ωωωi−1 +βββ,1) as the initial state for

the next pass. The extension field is computed as:

βββ = max

(
1− SDF(V)

bβ

,0

)
(22)

where SDF is a signed distance field, V is the set of constrained
voxels and bβ is a bandwidth parameter. Fig. 6 illustrates these
quantities. The strategy essentially inflates the existing reinforce-
ment structure for the next optimization pass.

Figure 6: Left: Solution ωωω
i−1 after one optimization pass. Middle:

The reinforcement structure V from ωωω
i−1. Right: Extension field βββ

of V .

Using the extension field βββ and constraints on V , we run the
next optimization pass. We found this to be effective in perturb-
ing the solution from local minima and finding sparser and more
interesting structures, e.g. as shown in Fig. 7. The complete opti-
mization is listed in Algorithm 1. We found that nopt = 3 rounds of
optimization with MMA produces converged results. As shown in
Fig. 8, nopt > 3 produces little change. In all our computations we
set c = 0.7 and bβ = 16 grid cells.

Figure 7: Left: Initial state min(ωωωi−1 +βββ,1) for the next round of
optimization. Right: Converged result ωωω

i after the next round.

nopt=1 nopt=2 nopt=3 nopt=4

Figure 8: Results with different nopt . We set nopt = 3 because
nopt > 3 yielded negligible improvements.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

Algorithm 1 Incremental Shape Optimization

Input: User-defined geometry , user defined failure probability Θ

1: procedure SHAPE OPTIMIZATION

2: ωωω
1← 111

3: Optimize ωωω
1 using MMA to convergence

4: V ← voxels in ωωω
1 with density larger than c

5: for i from 2 to nopt do
6: Compute βββ from V
7: ωωω

i←min(ωωωi−1 +βββ,1)
8: Constrain densities of V to 1
9: Optimize ωωω

i using MMA to convergence
10: V ← voxels in ωωω

i with density larger than c
11: end for
12: V ←∅
13: ωωω

f ←ωωω
m

14: Optimize ωωω
f using MMA to convergence

15: end procedure

4.4. Sheathing Post-Process

Many algorithms constrain the exterior of the object during the op-
timization [UMK17, LSD∗16]. However, the final object then has
an outer shell that is the thickness of the (quite coarse) voxel grid.
However, as the shell is thickened, it can become the main rein-
forcement structure in the model [UMK17], which biases the opti-
mization towards shell-like designs, and results in heavier objects.
Instead, we only constrain the shell at force contact locations, al-
lowing the optimizer to find a lighter reinforcement structure, and
allowing surface regions which are unlikely to experience contact
to be hollowed out. To preserve the surface geometry, we perform a
post-process that adds a thin “sheath” of material, far below the res-
olution that we can simulate, along the original surface. We show
in §5.4 that this sheathing has a minimal impact on the object’s
performance.

5. Implementation and Results

Figure 9: Force contact locations for different examples. Surfaces
marked red are possible contact locations.

5.1. Implementation Details

We initially voxelize the surface mesh according to the resolutions
in Tbl. 4. We use Bullet [C∗13] to obtain rigid body force sam-

ples. For all our examples, we use the following scenario: the shape
falls 1 meter with a random initial orientation and small random
angular velocity, and hits a flat plane. We record the three initial
contact events when the shape hits the ground. We use ns = 5000
rigid body simulations in all our examples and kept 90% of the to-
tal variance when performing PCA on the force samples. To avoid
checkerboard patterns, we augment our cost function with the en-
ergy term of from Schumacher et al. [SBR∗15]. We constrain the
rigid body contact locations to ωe = 1 to ensure that they do not
change during optimization. As shown in Fig 9, these locations are
usually very sparse and lie on the object’s convex hull. We use the
following material parameters: Young’s modulus = 2.2 GPa, den-
sity = 1.037 g/cm3, and yield stress = 0.031 GPa. The object is
scaled so that the maximal bounding box dimension is 15 cm.

We implemented our algorithm in C++. OpenMP multi-
threading was used whenever possible, Eigen [GJ∗10] is used for
most matrix operations, Intel’s Paradiso was used to solve linear
systems, and Armadillo [SC16] was used for the GMMs. All our
results were run on a desktop with 192 GB of memory and a 2.4
GHz, 20-core Intel 6148.

5.2. Optimization Results

Figure 10: Left: The teapot, camel, beaver, and tiger surface
meshes. Middle: Final optimized density field. Right: Final meshed
results, rendered translucently to show internal structure.

Fig. 10 shows that our method adds densities to locations of po-
tential high stress. In particular, fragile locations such as the head of
the beaver, the extremities of the camel, the handle and spout tip of
the teapot, the beak corner (commissure) on the crow (Fig. 1), and

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

the pelvis of the Armadillo (Fig. 15, top) are reinforced during opti-
mization. Conversely, material is removed from low-stress regions.
We do not constrain the surface, so interesting contact-dependent
structures form, such as the removal of the beaver’s back, the tiger’s
chest, and the divot between the camel’s humps.

Figure 11: Left: Optimized result of a beaver with its tail. Colli-
sion with its back becomes very unlikely, so the region is entirely
hollowed out. Right: With the tail removed, the back experiences
collisions, so the material remains.

To further explore the dependence of our algorithm on real-
world contacts, we optimized a beaver model with and without its
tail (Fig. 11). The optimizer aggressively subtracts material along
the beaver’s back when collisions in that region become unlikely.
Fig. 12 compares our results to Langlois et al. [LSD∗16], and
shows that our method consistently produces a superior (lighter)
object. Tbl. 2 shows the survival probability remains similar, and
we achieve up to 3.22× lighter objects. Fig. 13 shows the object
weights and survival probabilities during optimization. Langlois et
al. [LSD∗16] stalls early, while our method makes steady progress.

Model Method Weight
(gram)

Improve-
ment

Survival Prob-
ability

Rabbit
[LSD∗16] 97.3 0.630

Ours 36.7 222...666555× 0.662

Penguin
[LSD∗16] 94.8 0.650

Ours 29.4 333...222222× 0.767

Molar
[LSD∗16] 63.6 0.598

Ours 32.3 111...999666× 0.621

Table 2: The final object weight and survival probabilities of our
method and Langlois et al. [LSD∗16]. Our method consistently pro-
duces lighter objects with similar survival probabilities.

5.3. Post-Processing

As is common in many algorithms, we optimize over continuous
densities (Fig. 14, left). To obtain the final mesh (Fig. 14, middle),
we use marching cubes on the density field [LC87] to obtain the
ω = 0.5 isocontour. Since we did not constrain the exterior shell
of the object, we attach a thin shell of width dx

4 using the SDF of
the original mesh, where dx is length of one hexahedron (Fig. 14,
right). We show in §5.4 that this thin shell has a negligible effect on
the final object’s weight and survival probability.

Figure 12: The Langlois et al. [LSD∗16] algorithm vs. ours. Left:
Original shape. Middle: Stalled result from Langlois et al. Right:
Improved result using ours.

5.4. Optimization Validation

We ran several comparisons to validate our sheathing post-process.
First, we compared the results of the optimization with and without
shell constraints (Tbl. 3). The shell constraint consistently produces
heavier results, even through the survival probability is almost iden-
tical. We then added a thin sheath to the results without the shell
constraint. The survival probability remains essentially the same
(in the Armadillo case, it actually improves), and the object weight
remains significantly below that found using the shell constraint.

Model Configuration Weight
(gram)

Survival
Probability

Armadillo
with shell constraint 86 0.706
w/o shell constraint 56 0.706
sheathing post-process 66 0.700

Raven
with shell constraint 63 0.624
w/o shell constraint 42 0.624
sheathing post-process 48 0.632

Teapot
with shell constraint 75 0.737
w/o shell constraint 52 0.737
sheathing post-process 62 0.747

Tiger
with shell constraint 65 0.813
w/o shell constraint 45 0.813
sheathing post-process 52 0.819

Table 3: Results with and without the shell constraint, and with the
sheathing post-process from §4.4.

Additionally, we visualized the von Mises stresses for several
models in Fig. 15. The heavier shell-constrained models produce

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

Figure 13: Left: The object weights and survival probabilities when
optimizing using Langlois et al. [LSD∗16]. The convergence con-
sistently stalls. Right: The same plots using our method. Top to
bottom: The rabbit, penguin, and molar models. The dashed line is
the constraint probability. In our method, the curves jump at opti-
mization restarts, but eventually reach lower weights.

Figure 14: Left: Optimized density field. Middle: Post processed
final shapes. Right: Cut view of the post processed shapes.

larger rigid body impact forces, and therefore larger stresses. The
sheath post-processed models have almost the same stress distribu-
tion as the original shell-unconstrained results, which indicate that
the regions of likely impact have been effectively reinforced.

6. Physical Validation

We printed five copies of our Raven model with the sheath and five
copies without. The results are shown in Fig. 2.

Figure 15: Left: The von Mises stress of models with a shell con-
straint. Middle: Stresses without a shell constraint. Right: Stresses
after a sheath is added. The stresses appear in essentially the same
regions. Notice the optimization with a shell constraint produces a
higher stress in the pelvis of the armadillo.

Figure 16: Photographs of breakage patterns. Left: Breakages of
the un-sheathed object. Right: Breakages of the sheathed object.

We then dropped each model from a height of 1.5 meters until a
breakage occurred. Each drop used a random initial orientation, and
the results are listed in Tbl. 5. We computed the expected survival
probabilities from these breakage statistics, and found that they are
close to the probability predicted by our simulation.

In Fig. 16 we show two breakage patterns from the sheathed and
un-sheathed objects. Breaks occur around the beak or contact lo-
cations. In all five of our tests, as predicted by our simulation, the
sheath did not come into contact with the ground.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

Time (s)

Model Resolution # Iters Sampling GMMs FEM
Solve

Grad Total Volume
Reduction

Survival
Probability

Armadillo 56×64×52 189 72.52 31.40 8.36 289.17 401.45 67.4% 0.706

Camel 20×64×52 142 70.14 20.00 3.71 140.34 234.19 64.8% 0.734

Beaver(tail) 56×28×64 162 60.55 22.56 6.28 200.84 290.23 70.4% 0.617

Raven 32×64×40 159 62.11 31.00 5.00 260.70 328.18 73.1% 0.624

Teapot 64×36×44 168 60.80 43.00 7.51 282.51 393.83 71.7% 0.737

Dog 40×64×60 103 74.69 32.44 11.8 341.81 460.71 77.4% 0.754

Tiger 32×40×64 134 67.36 31.04 4.93 170.77 274.10 67.1% 0.813

Penguin 36×48×40 97 21.74 42.11 11.5 180.51 255.85 71.3% 0.767

Rabbit 28×44×48 103 17.28 35.15 6.57 99.72 158.72 68.9% 0.662

Hand 40×32×24 98 30.72 28.28 3.80 57.66 120.46 68.8% 0.868

Molar 32×28×48 91 33.41 41.87 5.45 127.03 207.76 60.0% 0.621

Panda 28×32×36 95 17.22 35.12 4.54 90.30 147.18 68.2% 0.776

Table 4: Timing breakdown (in seconds), volume reduction, and survival probability across different examples. The volume reduction is
computed with final after the sheathing post-process.

sheathed un-sheathed
weight # of drops weight # of drops
44.02 g 4 41.68 g 5
45.00 g 4 42.62 g 3
44.84 g 3 42.48 g 3
44.44 g 3 41.77 g 2
44.89 g 2 41.26 g 2

Table 5: Number of experimental drops of the sheathed and un-
sheathed objects before breakage. Our predicted probability of re-
maining intact is respectively 0.632 and 0.624. The expected proba-
bility of remaining intact computed from the breakage statistics and
assuming a binomial distribution is respectively 0.688 and 0.666.

7. Discussion and Future Work

We have described an asymptotically faster and more robust
method for stochastic structural optimization. We reduced the pre-
vious quadric complexity to linear, which results in a two order
of magnitude speed-up. By stabilizing the gradients and utilizing a
constrained restart method, we achieve better convergence.

We hold the contact points fixed during the optimization, which
enables us to use a finite difference method to compute the iner-
tia gradients (i.e. the gradient of the rigid body simulator). How-
ever, this means that our method cannot handle topological changes
along the surface, so it limited to examples where the external sur-
face is prescribed. As a direction for future work, allowing the gra-
dients to incorporate shape changes would broaden the possible ap-
plication areas.

While the constrained restart method works in practice, it re-

mains to be seen if the reinforcement structure can be identified
and constrained within a single optimization pass to improve con-
vergence. Even with our improvements, computing the probability
gradient can still be a bottleneck due to its dense linear algebra op-
erations, which limits the resolution of our method. One way to
reduce this cost could be to use a sparse grid [LHZ∗18].

References
[Ben89] BENDSØE M. P.: Optimal shape design as a material distribution

problem. Structural optimization 1, 4 (1989), 193–202. 2

[Bis06] BISHOP C. M.: Pattern recognition and machine learning.
springer, 2006. 5

[BMS15] BERNARDI R. C., MELO M. C., SCHULTEN K.: Enhanced
sampling techniques in molecular dynamics simulations of biological
systems. Biochimica et Biophysica Acta (BBA)-General Subjects 1850,
5 (2015), 872–877. 6

[BS95] BENDSØE M. P., SIGMUND O.: Optimization of structural topol-
ogy, shape, and material, vol. 414. Springer, 1995. 2, 6

[C∗13] COUMANS E., ET AL.: Bullet physics library. Open source: bul-
letphysics. org 15, 49 (2013), 5. 7

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3.
http://eigen.tuxfamily.org, 2010. 7

[GS91] GHANEM R. G., SPANOS P. D.: Stochastic Finite Elements: A
Spectral Approach. Springer-Verlag, 1991. 2

[GVL13] GOLUB G. H., VAN LOAN C. F.: Matrix computations. The
Johns Hopkins University Press (2013). 6

[LBM86] LIU W. K., BELYTSCHKO T., MANI A.: Probabilistic finite el-
ements for nonlinear structural dynamics. Computer Methods in Applied
Mechanics and Engineering 56, 1 (1986), 61 – 81. 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high reso-
lution 3d surface construction algorithm. In ACM SIGGRAPH computer
graphics (1987), vol. 21, ACM, pp. 163–169. 8

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

[LEM∗17] LIVESU M., ELLERO S., MARTÍNEZ J., LEFEBVRE S., AT-
TENE M.: From 3d models to 3d prints: an overview of the processing
pipeline. In Computer Graphics Forum (2017), vol. 36, Wiley Online
Library, pp. 537–564. 1

[LHZ∗18] LIU H., HU Y., ZHU B., MATUSIK W., SIFAKIS E.: Narrow-
band topology optimization on a sparsely populated grid. ACM Trans.
Graph. 37, 6 (Dec. 2018), 251:1–251:14. 2, 10

[LJM12] LEE E., JAMES K. A., MARTINS J. R.: Stress-constrained
topology optimization with design-dependent loading. Structural and
Multidisciplinary Optimization 46, 5 (2012), 647–661. 2, 4

[LSD∗16] LANGLOIS T., SHAMIR A., DROR D., MATUSIK W., LEVIN
D. I. W.: Stochastic structural analysis for context-aware design and
fabrication. ACM Trans. Graph. 35, 6 (Nov. 2016), 226:1–226:13. 1, 2,
3, 4, 5, 7, 8, 9, 11

[LSZ∗14] LU L., SHARF A., ZHAO H., WEI Y., FAN Q., CHEN X.,
SAVOYE Y., TU C., COHEN-OR D., CHEN B.: Build-to-last: Strength
to weight 3d printed objects. ACM Trans. Graph. 33, 4 (July 2014),
97:1–97:10. 2

[MS19] MATUSIK W., SCHULZ A.: Computational fabrication. In ACM
SIGGRAPH Courses (2019), pp. 7:1–7:305. 1

[PP96] PAPADRAKAKIS M., PAPADOPOULOS V.: Robust and efficient
methods for stochastic finite element analysis using monte carlo simula-
tion. Computer Methods in Applied Mechanics and Engineering 134, 3
(1996), 325 – 340. 2

[PRZ17] PANETTA J., RAHIMIAN A., ZORIN D.: Worst-case stress re-
lief for microstructures. ACM Trans. Graph. 36, 4 (July 2017), 122:1–
122:16. 2

[SBR∗15] SCHUMACHER C., BICKEL B., RYS J., MARSCHNER S.,
DARAIO C., GROSS M.: Microstructures to control elasticity in 3d print-
ing. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–13. 7

[SC16] SANDERSON C., CURTIN R.: Armadillo: a template-based c++
library for linear algebra. Journal of Open Source Software 1, 2 (2016),
26. 7

[Ste09] STEFANOU G.: The stochastic finite element method: Past,
present and future. Computer Methods in Applied Mechanics and En-
gineering 198, 9 (2009), 1031 – 1051. 2

[Sva02] SVANBERG K.: A class of globally convergent optimization
methods based on conservative convex separable approximations. SIAM
Journal on Optimization 12, 2 (2002), 555–573. 3, 5, 6

[SZB18] SCHUMACHER C., ZEHNDER J., BÄCHER M.: Set-in-stone:
Worst-case optimization of structures weak in tension. ACM Trans.
Graph. 37, 6 (Dec. 2018), 252:1–252:13. 2

[UMK17] ULU E., MCCANN J., KARA L. B.: Lightweight structure
design under force location uncertainty. ACM Trans. Graph. 36, 4 (July
2017), 158:1–158:13. 2, 7

[UMK19] ULU E., MCCANN J., KARA L. B.: Structural design using
laplacian shells. arXiv preprint arXiv:1906.10669 (2019). 2

[WWY∗13] WANG W., WANG T. Y., YANG Z., LIU L., TONG X.,
TONG W., DENG J., CHEN F., LIU X.: Cost-effective printing of 3d ob-
jects with skin-frame structures. ACM Trans. Graph. 32, 6 (Nov. 2013),
177:1–177:10. 2

[XSZB15] XU H., SIN F., ZHU Y., BARBIČ J.: Nonlinear material de-
sign using principal stretches. ACM Trans. Graph. 34, 4 (July 2015),
75:1–75:11. 11

[ZPZ13] ZHOU Q., PANETTA J., ZORIN D.: Worst-case structural anal-
ysis. ACM Trans. Graph. 32, 4 (July 2013), 137:1–137:12. 2

Appendix A: Evaluation of the Derivative of Reduced Force
Vectors

For completeness, we summarize the derivative of the reduced
force basis vectors F̄, which is described in the supplemental mate-
rial of [LSD∗16]. A finite element force sample fi ∈R3n is obtained

by mapping a rigid body force li via a projection matrix J: fi = Jli.
Each rigid body force sample li ∈ R3nu+6 is of the form:

li =
[
l1 . . . lnu fcom

τττ
com] (23)

where l3(j−1) ∈ R3, j = 1, . . . ,nu are the contact forces sampled at
the surface of the object, nu is the total number of possible con-
tact positions, and fcom,τττcom ∈ R3 are the inertial force and torque
acting on the center of the mass.

The matrix J is of the form:

J =
[
Jm Jcom Jτ

]
(24)

where Jm ∈ R3n×3nu maps the surface contact points to volumetric
element vertices, and Jcom,Jτ ∈ R3n×3 map the inertial forces and
torques acting on the center of mass to element vertices.

Given ns rigid body force samples, L =
[
l1 . . . lns

]
, the re-

duced force basis F̄ is the eigenvectors of the covariance matrix
of the force samples, JL. Therefore, we have JLLT JT ≈ F̄ΛΛΛF̄T ,
where ΛΛΛ ∈ Rr×r is a diagonal matrix of eigenvalues of the co-
variance matrix JLLT JT . From here we follow the procedure
of [XSZB15]. We have:

∂JLLT JT

∂ωe
=

∂F̄
∂ωe

ΛΛΛF̄T + F̄ ∂ΛΛΛ

∂ωe
F̄T + F̄ΛΛΛ

∂F̄T

∂ωe
(25)

Multiplying Eqn. 25 with F̄T from the left and F̄ from the right
yields:

F̄T ∂JLLT JT

∂ωe
F̄ = F̄T ∂F̄

∂ωe
ΛΛΛ+

∂ΛΛΛ

∂ωe
+ΛΛΛ

∂F̄T

∂ωe
F̄ (26)

Denote Be = F̄T ∂JLLT JT

∂ωe
F̄. The matrix We = F̄T ∂F̄

∂ωe
is antisym-

metric [XSZB15], therefore ∂ΛΛΛ

∂ωe
= diag(Be), so we have:

Be−diag(Be) = WeΛΛΛ+ΛΛΛWT
e (27)

Exploiting the skew-symmetry of We and setting λλλ = diag(ΛΛΛ),
we can derive a simple update equation:

(λi−λ j)Wi je = B∗i j (28)

where B∗ = Be− diag(Be). We solve this equation for each Wi je.
Finally we can compute the approximate gradients as ∂F̄

∂ωe
= F̄We.

The matrix J has a closed form derivative and we compute the
derivative of LLT using finite differences of the rigid body force
samples, so ∂JLLT JT

∂ωe
is straightforward to evaluate.

Appendix B: Enhanced Evaluation for We

To evaluate We, first we need to evaluate Be, and then compute We
according to equations 27 and 28. Using equation 25 and expanding
derivatives, we have:

Be = B1
e +B2

e +(B1
e)

T

B1
e = F̄T ∂J

∂ωe
LLT JT F̄ B2

e = F̄T J ∂LLT

∂ωe
JT F̄

(29)

First we consider the evaluation of B1
e . Because only the ∂J

∂ωe
factor is different from element to element, we can precompute
LLT JT F̄∈R(nu+6)×r in O(n2

ur+mr) for all the elements. The ma-
jor complication is to compute F̄T ∂J

∂ωe
efficiently for all elements.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

From Appendix C, ∂J
∂ωe

is composed of three parts:

∂J
∂ωe

=
[
0 Ĵc Ĵτ

]
+
[
0 J̃c

e J̃r
e +JcomJ̃τ

e
]

(30)

where Ĵc, Ĵτ ∈ R3n×3 is constant for all the elements,
J̃c

e, J̃r
e ∈ R3n×3 is different from element to element (but its

sparsity is of O(c), where c is a constant), Jcom ∈ R3n×3 is a
constant matrix, and J̃τ

e ∈ R3×3 differs from element to element
(but it is a small matrix).

Computing F̄T ∂J
∂ωe

naively for all elements poses a complexity

of O(m2r). However,

F̄T ∂J
∂ωe

=
[
0 F̄T Ĵc F̄T Ĵτ

]
+
[
0 F̄T J̃c

e F̄T J̃r
e + F̄T JcomJ̃τ

e
]

(31)

where F̄T Ĵc, F̄T Ĵτ and X = F̄T Jcom can be precomputed for all ele-
ments in O(mr). The only terms which are needed per-element are
F̄T J̃c

e, F̄T J̃r
e and XJ̃τ

e. Because the three matrices J̃c
e, J̃r

e and J̃τ
e have

a constant number of non-zero entries, this can be done for all ele-
ments in O(mr). Therefore, computing F̄T ∂J

∂ωe
can be reduced from

O(m2r) to O(mr). The final matrix products F̄T ∂J
∂ωe and (LLT JT F̄)

take O(mr2) for all elements. Therefore, B1
e can be computed in

O(mr2).

Now consider the evaluation of B2
e . Finite differences are used to

evaluate ∂(LLT)
∂ωe

.

∂(LLT)

∂ωe
=

i=10

∑
i=1

∂(LLT)

∂Mi

∂Mi

∂ωe
(32)

∂(LLT)
∂Mi

are 10 matrices which can be precomputed in O(nuns)

for all elements. The matrix product (F̄T J) ∂LLT

∂ωe (JT F̄) takes
O(m(rn2

u + r2nu)) for all elements. This is the total complexity for
B2

e .

This part can also be accelerated through further precomputa-

tion. Denote Ai =
∂(FT F)

∂Mi
, H = F̄T J ∈ Rr×(nu+6). We have:

B2
e = H

i=10

∑
i=1

Ai
∂Mi

∂ωe
HT =

i=10

∑
i=1

HAiHT ∂Mi

∂ωe
(33)

Since only ∂Mi
∂ωe

changes between elements, we can precompute

HAiHT ∈Rr×r before doing the summation. This reduces the com-
plexity for evaluation of B2

e to O(mr2), and also reduces the total
complexity for Be to O(mr2).

Appendix C: Evaluation of Derivative ∂J
∂ωe

Here we explain how to compute the derivative ∂J
∂ωe

. The general
form of J is shown in equation 24. The matrix Jm maps a sur-
face index to full volume index. Because the FEM mesh does not
change during optimization, ∂Jm

∂ωe
= 0. We only need to consider last

6 columns of J:
[
Jcom Jτ

]
.

Before going into the details of Jcom and Jτ, denote the total mass
of the object as M, and the total number of element nodes as n. The

mass for each node i is mi, the fill ratio for each element e is ωe,
and the mass of each element is de = ρωe, where ρ is the density.

Because we use hexahedral elements in the FEM mesh, we com-
pute the node mass as:

mi = ∑
j∈N(i)

1
8

d j (34)

where N(i) denotes the set of element indices adjacent to node i.

The matrix Jcom maps the center of mass force to each element.
It is a tiled diagonal matrix of 3×3 of the following form:

Jcom =
1
M

...
...

...
mi 0 0
0 mi 0
0 0 mi
...

...
...

 (35)

To compute ∂Jcom

∂ωe
for element e, we need to evaluate:

∂(mi/M)

∂ωe
=

∂mi

∂ωe

1
M
− ∂M

∂ωe

mi

M2 , i = 1, . . . ,n (36)

The second term on the right hand side of equation 36 is non zero
for all i = 1, . . . ,n, because all element nodes contribute to the total
mass M.

− ∂M
∂ωe

mi

M2 =− ∑
k∈N(e)

∂mk
∂ωe

mi

M2 (37)

Because element e contributes 1
8 de to node mk, we have

−1
8 ∑

k∈N(e)

∂de

∂ωe

mi

M2 =−1
8 ∑

k∈N(e)
ρ

mi

M2 =−ρ
mi

M2 , i = 1, . . . ,n

(38)

Denote this part of the derivative as Ĵc. It is a dense tiled matrix
of the form:

Ĵc =
ρ

M2

...
...

...
−mi 0 0

0 −mi 0
0 0 −mi
...

...
...

 (39)

where every i = 1 . . .n is tiled with the 3×3 diagonal matrix.

Now consider the first part of equation 36, which is non zero
only for nodes i that are adjacent to element e. We have:

∂mi

∂ωe

1
M

=
∂mk
∂ωe

1
M

=
ρ

8M
, f or k ∈ N(e) (40)

This part of the derivative is J̃c
e, a sparse matrix of the form:

J̃c
e =

...
...

...
ρ

8M 0 0
0 ρ

8M 0
0 0 ρ

8M
...

...
...

(41)

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Q. Cui & et al. / Fast and Robust Stochastic Structural Optimization

where only node indices k ∈ N(e) are filled with the 3×3 diagonal
matrix. So in summary:

∂Jcom

∂ωe
= Ĵc + J̃c

e (42)

The matrix Jτ maps the center of mass torque to the elements. It
is a tiled 3×3 skew-symmetric matrix, where each matrix denotes
a cross product:

Jτ =
1
M

...
...

...
0 rizmi −riymi

−rizmi 0 rixmi
riymi −rixmi 0

...
...

...

 (43)

where ri = pi− q denotes the vector pointing from the center of
mass (q) to the position of node i (pi). Subscripts x,y,z denote
the respective components of that vector. To compute its derivative,
consider the z component:

∂(rizmi/M)

∂ωe
=

∂riz

∂ωe

mi

M
+ riz

∂(mi/M)

∂ωe
, i = 1, . . . ,N (44)

The second term of 44 is computed with equations 36 and 40, and
results in a constant part which is included in equation 49, as well
as the following non-constant sparse term:

J̃r
e =

ρ

8M

...
...

...
0 rkz −rky
−rkz 0 rkx
rky −rkx 0
...

...
...

 . (45)

Similar to equation 41, only node indices k ∈ N(e) are filled. For
the first term in equation 44, we have:

∂riz

∂ωe

mi

M
=

∂(piz−qz)

∂ωe

mi

M
=− ∂qz

∂ωe

mi

M
(46)

Since qz = ∑
n
k=1 pkzmk/M, denote sss = ∑

N
k=1 pkzmk, we have:

−∂(sss/M)

∂ωe

mi

M
=− ∂sss

∂ωe

mi

M2 +
qzmi

M2
∂M
∂ωe

, i = 1, . . . ,N (47)

The second part of this equation is equal to ρ
qzmi
M2 for all i, so we

have the total contribution to the constant part of derivative as:

(qz− riz)
ρmi

M2 , i = 1, . . . ,N (48)

we denote this part as Ĵτ, which is constant for all elements.

Ĵτ =

ρ

M2

...
...

...
0 (qz− riz)mi −(qy− riy)mi

−(qz− riz)mi 0 (qx− rix)mi
(qy− riy)mi −(qx− rix)mi 0

...
...

...

(49)

For the first term of equation 47:

∂sss
∂ωe

mi

M2 =− ∑
k∈N(e)

pkz
∂mk
∂ωe

mi

M2

=− ∑
k∈N(e)

1
8

pkzρ
mi

M2 , i = 1, . . . ,N
(50)

The summation of node position ∑k∈N(e)
1
8 pkz is the z component

of the position of element e. Using the z component of the centroid
of element e: tez = ∑k∈N(e)

1
8 pkz, equation 50 can be computed as:

1
M

...
...

...
mi 0 0
0 mi 0
0 0 mi
...

...
...

ρ

M

 0 −tze tye
tze 0 −txe
−tye txe 0

= JcomJ̃τ
e (51)

where the matrix J̃τ
e denotes the right 3×3 matrix of element e. In

summary, the derivative of J is:

∂J
∂ωe

=
[
0 Ĵc Ĵτ

]
+
[
0 J̃c

e J̃r
e +JcomJ̃τ

e
]

(52)

Appendix D: Optimization with different SIMP parameters

SIMP penalizes intermediate densities in structural optimization
by exponentiating them when computing the stiffness matrix. This
makes the intermediate densities uneconomical in the optimization,
attempting to force them to go to either zero or one. The exponent
is a parameter, where increasing it will further penalize the inter-
mediate densities, but render the optimization more difficult.

In figure 5, we use SIMP with an exponent of 5. We experi-
mented with different choices and found it does not improve the
results. As shown in figure 17, small SIMP exponents (2 or 3) lead
to an unacceptable number of intermediate densities. Increasing the
exponent above 10 often stall the optimization at the very begin-
ning. We need a different approach to overcome the local minima.

Figure 17: Top row: Converged results using SIMP exponent 2,3
respectively. Bottom row: Converged results using SIMP exponent
5, 10, respectively.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

