
Example-based Turbulence Style Transfer

SYUHEI SATO, DWANGO Co., Ltd., Dwango CG Research
YOSHINORI DOBASHI, Hokkaido University and Dwango CG Research
THEODORE KIM, Pixar Animation Studios
TOMOYUKI NISHITA, Dwango CG Research and Hiroshima Shudo University

Fig. 1. Example of smoke interacting with obstacles. On the left is the original, low-resolution smoke (“target”). On the right, we transferred high-resolution
turbulent motion from the middle image onto the low-resolution original. Closeups of the red square regions are shown in the insets.

Generating realistic fluid simulations remains computationally expensive,
and animators can expend enormous effort trying to achieve a desiredmotion.
To reduce such costs, several methods have been developed in which high-
resolution turbulence is synthesized as a post process. Since global motion
can then be obtained using a fast, low-resolution simulation, less effort is
needed to create a realistic animation with the desired behavior. While much
research has focused on accelerating the low-resolution simulation, the
problem controlling the behavior of the turbulent, high-resolution motion
has received little attention. In this paper, we show that style transfermethods
from image editing can be adapted to transfer the turbulent style of an
existing fluid simulation onto a new one. We do this by extending example-
based image synthesis methods to handle velocity fields using a combination
of patch-based and optimization-based texture synthesis. This approach
allows us to take into account the incompressibility condition, which we

Authors’ addresses: Syuhei Sato, DWANGO Co., Ltd., Dwango CG Research, syuhei_
sato@dwango.co.jp; Yoshinori Dobashi, Hokkaido University, Dwango CG Research,
doba@ime.ist.hokudai.ac.jp; Theodore Kim, Pixar Animation Studios, tkim@pixar.
com; Tomoyuki Nishita, Dwango CG Research, Hiroshima Shudo University, nishita@
shudo-u.ac.jp.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART84 $15.00
https://doi.org/10.1145/3197517.3201398

have found to be a important factor during synthesis. Using our method, a
user can easily and intuitively create high-resolution fluid animations that
have a desired turbulent motion.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation;

Additional Key Words and Phrases: fluid simulation, reusing existing fluid
animations, incompressibility, texture synthesis, patch-based synthesis

ACM Reference Format:
Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita. 2018.
Example-based Turbulence Style Transfer.ACMTrans. Graph. 37, 4, Article 84
(August 2018), 9 pages. https://doi.org/10.1145/3197517.3201398

1 INTRODUCTION
Physically-based fluid simulation is used extensively in many pro-
duction environments, such as movies. However, they remain com-
putationally expensive, and animators must tediously repeat sim-
ulations multiple times in order to find parameter settings that
produce a desired motion. In order to accelerate these design iter-
ations, post-processing approaches have been proposed that add
plausible turbulence [Kim et al. 2008; Narain et al. 2008; Schechter
and Bridson 2008] and utilize guide-based formulations [Nielsen
and Christensen 2010; Nielsen et al. 2009].
These methods all follow the same workflow: the overall mo-

tion is first efficiently authored at a low-resolution, and small-scale,
high-frequency details are then synthesized as a post-process. While

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201398
https://doi.org/10.1145/3197517.3201398

84:2 ˆ Sato, Dobashi, Kim, and Nishita

much e�ort has been invested in accelerating low-resolution simu-
lations, surprisingly little research exists that addresses the problem
of designing the small-scale detail. Most existing methods simply
use existing procedural noise functions [Lagae et al. 2010].

However, the appearance of the �nal �uid motion can be consid-
erably di�erent depending on the representation of the small-scale
details, even while the overall input motion remains the same. Unfor-
tunately, since the small-scale details are generated entirely during
the post-process, its overall appearance will not be clear to the user
until after this lengthier process has completed.

In this paper, we presentturbulence style transfer, an approach
that allows the small-scale details of high-resolution simulation
to be added to a low-resolution �ow. While previous approaches
allowed the user to design a low-resolution �ow without having
to consider the high-resolution features, our approach enables the
reverse. The user can design a high-resolution �ow with the desired
turbulence characteristics once, and then repeatedly transfer these
details onto low-resolution �ows. Fig. 1 shows an example of smoke
designed by our method.

We enable this new transfer-based approach by extending existing
example-based image synthesis approaches [Kwatra et al. 2005] to
handle vector �elds. Our approach proceeds in two stages (see Fig. 2).
First, we use patch-based synthesis to transfer high-frequency tur-
bulent motion in a way that preserves the low-frequency content.
Second, we apply optimization-based texture synthesis to resolve
discontinuities between patch boundaries in a way that incorporates
incompressibility. Full incompressibility is not necessary to achieve
a plausible result, so we provide a user parameter that controls its
amount.

2 RELATED WORK
Stam [1999] introduced the �rst unconditionally stable solver for
the Navier-Stokes equations to computer graphics. Since then, many
methods have been proposed for simulating �uid phenomena, which
are summarized in many excellent texts [Bridson 2015; Kim 2017].
Realistic animations can be produced with these methods, but users
must still run repeated simulations and search for good parameter
settings in order to obtain a desired motion.

Several post-processing approaches for synthesizing turbulence
have been proposed [Thuerey et al. 2013]. Kim et al. [2008], Narain
et al. [2008] and Schechter and Bridson [2008] synthesized detailed
turbulent motion on top of low-resolution simulations using a va-
riety of procedural noise functions. Nielsen et al. [2009] took a
variational approach and controlled a high-resolution �uid simula-
tion using a user-designed low-resolution simulation. Later work
accelerated the method [Nielsen and Christensen 2010]. Precompu-
tation was explored by Pfa� et al. [2009], who synthesized object-
induced turbulence by precomputing arti�cial boundary layer data.
In contrast, Sato et al. [2012] used a precomputed database of high-
resolution 2D velocity �elds to synthesize high-resolution velocity
�elds in 3D.

Previous synthetic turbulence models use procedural methods
such as Curl Noise [Bridson et al. 2007] as their high-resolution
model. Chu and Thuerey [2017] instead learned a more sophisticated
model by training a convolutional neural network (CNN). In contrast,

we allow a user to design a velocity �eld that contains the turbulence
characteristics they desire using whatever existing tools they prefer,
and transfer the details of this design onto a new simulation. With
CNN training, the learning algorithm must be re-run for a new high-
resolution �ow is introduced. While Chu and Thuerey [2017] do not
report any timing for this stage, machine learning training times are
generally quite long. Our method does not require any training; the
user simply re-runs the source simulation with di�erent parameters.

Many optimization-based methods have been proposed in texture
synthesis [Barnes and Zhang 2017; Wei et al. 2009]. One popular
method is that of Kwatra et al. [2005], where by successively per-
forming a nearest neighbor search and solving a linear system, a
texture that is su�ciently similar to an exemplar is synthesized.
Kwatra et al. [2007] and Bargteil [2006] proposed two similar meth-
ods for synthesizing a texture on a water surface, and Narain et al.
[2007] extended the method to add feature-guided details to the sur-
face from example images. When images of water, foam or lava, are
given to this system, an appropriate image is automatically selected
according to the local features of the water surface. We instead
focus on smoke on a grid, so these liquid surface-based methods
are orthogonal to our approach. Jamriska et al. [2015] proposed
an appearance transfer method for 2D �uid animations based on
Kwatra et al. [2005], where the boundary and interior of the �uid
are speci�ed with an alpha mask. However, this method is intended
for 2D animation and does not take into account incompressibility,
so it is again orthogonal to the current work.

Ma et al. [2009] synthesized the small-scale detail in a motion �eld
from an example image using the method of Kwatra et al. [2005].
The motion �eld is then added to a low-resolution motion �eld,
but is uniform over the entire �eld. The turbulence in most �uid
animations is heterogeneous in both space and scale, so this method
is not suitable for the current task. We instead take into account local
features of the input velocity and density �elds and use a similarity
measure to synthesize plausible turbulence.

The two stage Expectation-Maximization approach from Kwa-
tra et al. [2005] has basic connections to the Alternating Direction
Method of Multipliers (ADMM), which has been used for �uid re-
construction [Gregson et al. 2014], as well as primal-dual methods,
which were used to accelerate the guided shapes approach of Nielsen
et al. [2009] in Inglis et al. [2017]. However, none of these previous
approaches applied these methods to the problem of style transfer.

3 OVERVIEW AND DEFINITIONS
In this section, we will give an overview of our algorithm, and
de�ne the symbols and terminology we will use throughout this
paper. We use unbolded letters (d) to denote scalar quantities such as
density, and boldface (u) to denote vector quantities such as velocity.
Additionally, we use lower case (u or d) to denote low-resolution
grids, and upper case (Uor D) for high-resolution grids. For purposes
of exposition, we assume 2D grids.

Our goal is to transfer small-scale turbulence from a high-resolution
simulation onto a low-resolution velocity �eld. We use texture syn-
thesis to achieve this goal, but since these techniques do not take
incompressibility into account, their direct application does not
yield plausible results. Fig. 2 summarizes this process.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer̂ 84:3

Fig. 2. Our method takes low- and high-resolution fields as input, which
we denote as �target� and �source�, respectively. Our patch-based synthesis
stage first creates an intermediate high-resolution field. The final output is
computed by applying optimization-based synthesis to this intermediate
field to remove discontinuities between patches.

ut ;dt input target velocity �eld, density mask
Ut ;Dt upsampled version ofut ;dt
Us;Ds source velocity �eld, density mask
us;ds downsampled version ofUs;Ds

Ush;Usl high/low-frequency components ofUs
U�

h intermediate high-frequency components
Uh boundary-smoothed high-frequency components
Ûh advected version ofUh

Uf inal �nal output velocity �eld ¹= Uh + Ut º
� n ¹x; f º n � n size patch at pointx on �eld f

Table 1. Symbol definitions.

We take as input low-resolution velocity (ut) and density mask
(dt) �elds, as well as equivalent high-resolution �elds (Us andDs).
As indicated by the subscripts, we refer to these as the �target� and
�source� �elds. We assume that the number of frames in the two
input simulations is the same, and if a frame numberi needs to be
speci�ed, we use the indexing notationut ¹i º.

In the �rst stage of our algorithm, we decompose a low-resolution
velocity �eld into square patches, and use patch-based texture syn-
thesis to add high-resolution details to each patch. This stage in-
volves both a spatial and frequency-based decomposition.

The spatial decomposition is the aforementioned square patches,
and we label each patch as� n ¹x; f º. This indicates that the patch
lives in �eld f , is centered at pointx, and is composed ofn � n grid
cells. The patches are additionally de�ned on two spatial scales,
broadandnarrow, respectively on the low and high resolution grids
(see Fig. 3). These patches can be de�ned on both the target and the
source �elds. The broad patches are composed ofb � b grid cells,
while the narrow patches containB� B cells. For example,� b¹p; ut º
denotes a broad patch centered at pointp on ut (see Fig. 3).

Fig. 3. A two-level search is performed, first over broad patches (blue
squares) and then narrow patches (orange squares). A global search is
first performed over all broad patches to find the best match, and then a
narrower, local search is performed inside the best broad patch (red do�ed
square). The result of this stage is the intermediate velocity fieldU�

h , which
is created by copying the most similar patch inUsh to U�

h .

The frequency decomposition is obtained by downsampling the
source velocity �eld, upsampling it, and then taking the di�erence
with respect to the original. The downsampled versions of the source
�elds are denoted byus andds, and the low- and high-frequency
components of the source velocity �eld are denoted byUsl andUsh,
respectively. Linearly upsampled versions of the target velocity and
density �elds are denotedUt andDt .

In the second stage of our algorithm, we take the result of the
patch-based synthesis,U�

h , and optimize for smooth velocities across
patch boundaries. This takes the form of a constrained optimization
that takes into account incompressibility. We denote the boundary-
smoothed result asUh . We use an advection version ofUh , denoted
Ûh , to maintain temporal coherence in the patch-based synthesis
stage. The �nal velocity �eld is computed asUf inal = Uh + Ut , and
used to advect the density �eld that is shown in the �nal animation.

For convenience, all the symbols are summarized in Table 1.

4 PATCH-BASED TURBULENCE SYNTHESIS
In this �rst stage of our algorithm, we synthesize a preliminary
high-resolution velocity �eldU�

h that contains high-frequency com-
ponents from the source �eld. This is done in a patch-based manner,
so discontinuities will exist across patch boundaries that will be
addressed in the next section.

We start by regularly subdividing the upsampled target �eldUt
into narrow patches of sizeB � B (see Fig. 3, top left). For each of
these patches, the goal is then to �nd the patch in the source �eld
that best matches it. The high-frequency component from this best
patch will then be copied into the preliminary �eldU�

h .
A naïve approach would be to look for the best patch using an

exhaustive, brute-force search. We instead elect to use a two-level
algorithm that consists of a global and local stage. A global search is
�rst performed over all the broad patches on the low resolution grids
(see Fig. 3, bottom left), and once a promising patch has been found,

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

84:4 ˆ Sato, Dobashi, Kim, and Nishita

ALGORITHM 1: Patch-based turbulence synthesis

for each patch centerp on targetdo
if smoke initially appears in the patchthen

// global search
Etmp 1
for each patch centerq on downsampled sourcedo

Compute energy:El ¹p; qº by Eq. (1)
if Etmp > El ¹p; qº then

Etmp El ¹p; qº, ql q

else
ql qh in ¹i � 1º-th frame

// local search
Emin 1
for each patch centerq aroundql on sourcedo

Compute energy:Eh ¹p; qº by Eq. (2)
if Emin > Eh ¹p; qº then

Emin Eh ¹p; qº, qh q

� B ¹p; U�
h º � B ¹qh ; Ush º

a �ne-grained local search is performed at the higher resolution. A
global search over the full high-resolution data is thus avoided.

During the global search, each patch in the target �eld (ut ;dt º,
must �nd a closest match in the downsampled, low-resolution source
�eld ¹us;dsº. For each patch with centerp in the target �eld, we
search for the best matching positionql in the source �eld by solving
the following minimization problem.

ql = arg min
q

El ¹p; qº;

where

El ¹p; qº = jj� b¹p; ut º � � b¹q; usºj j2

+ � jj� b¹p;dt º � � b¹q;dsºj j2: (1)

Here,� is a regularization coe�cient for the second term, which
measures the di�erences in densities.

Next, we take the best broad patch found using Eq. (1) and perform
a high-resolution local search along its interior to �nd the most
similar narrow patch inside the broad patch (Fig. 3, top left). We
search the source �eld (Fig. 3, red dotted square) forqh , the patch
center that satis�es the following minimization:

qh = arg min
q

Eh ¹p; qº;

where

Eh ¹p; qº = jj� B¹p;Ut º � � B¹q;Usl ºj j
2

+ � jj� B¹p;Dt º � � B¹q;Dsºj j2

+ � jj� B¹p; Ûh º � � B¹q;Ushºj j2: (2)

Here,� takes into account density di�erences in the same way as
Eq. (1), and� is a regularization coe�cient that adjusts the in�uence
of previous frame. The intermediate turbulent velocity �eld is then
synthesized by copying the high frequency component of the best
patch fromUsh to the corresponding position inU�

h .

Fig. 4. Closeup around most similar narrow patches atp andqh found in
the patch-based synthesis. A processing region
 (the green grid) and a
boundary patch (the green square) are shown. The patch atsk in Ush on
the right is the closest patch to the boundary patch atrk in Uh on the le�.
The search region forsk in the first iteration of the optimization process is
defined by using the most similar narrow patch atqh (the orange square
on the right).

ALGORITHM 2: Smoothing velocities between patches

U0
h U�

h
for n 0 to Nmax do

for each patch centerrk do
sn
k center of nearest neighbor of� C ¹rk ; Un

h º in Ush

Un +1
h arg min

Uh

Eb ¹Uh ; sn
1 ; sn

2 ; � � � ; sn
N

º

if Eb is small enoughthen
Uh Un +1

h
Break

Two factors must be taken into account to maintain temporal
coherence. First, we only perform the global search when smoke
initially appears in a patch. In subsequent frames, the broad patch
is translated so that its center coincides with that of the best narrow
patch computed at the previous frame. Second, we advect the high-
frequency components from the previous (i � 1)-th frame,Uh ¹i � 1º,
using the upsampled target velocity �eldUt ¹i � 1º. The resulting
�eld is labelledÛh (see Fig. 3).

Finally, we additionally accelerate the search by leveraging the
density �elds. Thedt andDs �eld we use are not the original density
�elds, but indicator functions that are set to1 when the smoke
density exceeds a threshold, and0 otherwise. The search is only
performed for patches with non-zero indicator values, and thus
avoids spurious computation in regions of zero density.

Algorithm 1 summarizes the patch-based synthesis stage.

5 SMOOTHING VELOCITIES BETWEEN PATCHES
In the previous section, we synthesized a high-resolution veloc-
ity �eld U�

h . However, we have ignored the boundaries between
patches, so velocity discontinuities can appear along these seams.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

Example-based Turbulence Style Transfer̂ 84:5

In this section, we will propose an optimization method based on
the texture synthesis approach of Kwatra et al. [2005] that addresses
these discontinuities. The output will be the �nal velocity �eldUh .

The optimization only needs to occur along patch boundaries, so
we de�ne a lattice-structured region
 that is the union of all the
patch boundaries inUh (see the green grid in Fig. 4). The width of
the boundary region is speci�ed by the user, but we found that a
width of 4 worked �ne in all of our experiments.

We want to make the velocity �eld in
 as smooth as possible, but
also preserve the high-frequency details of the source �eld. Thus,
we propose to use vorticity to measure the similarity of the current
solution and the source �eld. We de�ne aC � C patch at every grid
point rk in
 , wherek 2 1; 2; � � � ; N
 andN
 is the total number of
grid points in
 . We call this aboundary patch(Fig. 4, green square).
Using the boundary patches, we minimize the following energy over
the
 region in Uh :

Eb¹Uh ; s1; s2; � � � ; sN
 º =

N
Õ

k=1

fj jr � � C¹rk ;Uh º � r � � C¹sk ;Ushºj j2

+ ¹r � � C¹rk ;Uh ºº2g: (3)

This energy is minimized with respect to two primary variables:Uh
andsk , wherek 2 1; � � � ; N
 . The patch centersrk andsk refer to
the patches whose vorticities are most similar. The corresponding
patch � C¹rk ;Uh º is centered atrk on the synthesized �eldUh ,
while � C¹sk ;Ushº is centered atsk on the high-frequency �eldUsh
(see Fig. 4). The �rst term in this energy compares the vorticity
between the synthesized �ow and the source �ow, and the second
term incorporates the incompressibility condition, which measures
the divergence of the current velocity �eld. The parameter allows
the weight for the incompressibility condition to be adjusted.

The energy is minimized using an Expectation-Maximization
approach that is similar to Kwatra et al. [2005]. The algorithm begins
by initializing Uh to U�

h . It then proceeds to alternately optimizeEb
with respect to two variables:sk andUh . In the �rst sk optimization
phase, it �nds the most similar patch onUsh for every patch centered
at rk (see Fig. 4). In the second phase, the algorithm minimizesEb
with respect toUh . This is accomplished by setting the derivative of
Eq. (3) with respect toUh equal to zero and by solving the resulting
linear system:

�r � ¹r � Uh ¹rk ºº + r¹r � Uh ¹rk ºº =

�
1
N

N
Õ

l =1

gkl r � ¹r � Ush¹sl ºº; (4)

whereUh ¹rk º andUsh¹sl º are point-sampled velocities fromUh and
Ush at locationsrk andsl . The variablegkl is an indicator function
that is equal to one if the boundary patch atrk overlaps the nearby
boundary patch atrl , and is zero otherwise. Since we only minimize
Eb over the region
 , the linear system is relatively small. The linear
system is similar to those from previous methods [Sato et al. 2016]
so we use a conjugate gradient (CG) solver. After solving forUh , the
set of closest patch centerssk may also change. Hence we iteratively
apply thesk and Uh optimization phases until the change inEb
becomes su�ciently small.

Fig. 5. Convergence of optimization energy over three di�erent search
ranges for smoothing:9 � 9, 17� 17, and33� 33. The images on the top
show the synthesized 2D smoke with the energies corresponding to the
points in the plot at the bo�om, (Le�: 9 � 9, 1 iteration) and (Right:33� 33,
10 iterations). The target and source are shown on the le�.

For e�ciency, we limit the search range for eachsk using the
results of the patch-based synthesis stage. Let us assume that the
center of a boundary patch,rk , is located within the narrow patch
at p (see Fig. 4). The most similar patch inUsh, centered atqh , was
already found during the patch-based synthesis process. The search
is thus centered atqh + ¹rk � pº (see the red dashed square in Fig. 4).
After the �rst iteration, we update the search center tosk .

The computational cost of the algorithm grows as we increase
the search range, so we ran experiments to determine when further
error reduction becomes visually negligible. Along the top of Fig. 5,
we compare smoke synthesized with two di�erent settings. On the
left is a single iteration with an9� 9search range and on the right is
ten iterations with a33� 33search range. The size of the boundary
patch is5 � 5. From these experiments, we concluded that a single
iteration with a 9� 9 search range provided su�cient visual quality,
so we used these settings for all the examples in this paper.

The fact that most error reduction occurs in the �rst iteration is
consistent with the behavior of local/global solvers in other areas of
graphics [Rabinovich et al. 2017]. The energy is almost converged
after just �ve or six iterations, and becomes smaller when using
larger search ranges.

6 ACCELERATION
Although our method can successfully synthesize small scale tur-
bulence, the search process associated with Eq. (2) can make com-
putation times prohibitively long. If an exhaustive search is used,
our method can be slower than running a direct simulation on a
high-resolution grid.

The most straightforward solution is to use a hierarchical data
structure such as a kd-tree. However, our experiments yielded
unattractive precomputation times for clustering and populating
such a tree, and the storage costs for 3D �elds become an issue.

We instead opted for a fast, simple, approximate method that
requires no precomputation. Our approach leverages the fact that
the velocity �elds in neighboring patches are usually very similar.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

84:6 ˆ Sato, Dobashi, Kim, and Nishita

Fig. 6. Results using our adaptive search algorithm. (a) and (b) are target
and source fields, respectively. (c) is synthesized by the exhaustive search
and (d) is by our adaptive search. The boundary smoothing process is not
applied.

Fig. 7. Comparison of results with di�erent patch sizes. (a) through (c)
show results obtained by di�erent broad and narrow patch sizes,b and B,
indicated by the captions. The source and the target fields are the same as
those in Fig. 5. The red circles indicate the regions where our method fails
to transfer turbulent motion due to an inappropriate patch size.

Fig. 8. Divergence observed with di�erent = 0:1; 1:0, 10:0, and100.

In lieu of an exhaustive search, we compute Eq. (2) over a subset of
regularly distributed patches. The neighborhood around the best
patch is then searched at more closely spaced intervals. This process
repeats until the interval becomes a single voxel.

More speci�cally, let us assume that there arem� m patches in the
search region. We �rst set an initial sampling interval ofm0, extract
m•m0 � m•m0 patches, and determine which patch in this subset is
most similar to the query patch. Next, a new subset of patches is
constructed near the most similar patch according to the sampling
interval m1 = m0•2. These processes are repeated untilmj = 1,
wherej is the number of iterations. Using this adaptive approach
dramatically accelerated the search process without introducing
any signi�cant artifacts. The adaptive approach was applied to both
Eqs. (2) and (3).

We con�rmed that this adaptive, approximate search process does
not compromise the quality of the �nal results. In Figs. 6(a) and (b),
we show a16� 24target and128� 192source �eld. We applied the
adaptive search method to the local search stage, where the sizes
of the narrow and broad patches,B andb, are 17 and 5, andm0
was set to8. Compared to the results of the exhaustive search, the
average relative error of the patches found by our adaptive algorithm
was1%. The computation times of the adaptive and the exhaustive
algorithms running on the CPU were 0.0125 and 0.115 seconds,
respectively. Our method is9:2� faster, and the quality in Figs. 6 (c)
and (d) are comparable. In order to facilitate the comparison, the
smoothing search (Eq. (3)) was deactivated for this example.

7 RESULTS
This section shows examples that demonstrate the e�ectiveness of
our method. For all examples, the target velocity �eld was computed
by using a Stam [1999] solver, and the turbulent source velocity
�eld is generated using vorticity con�nement [Fedkiw et al. 2001].
We used a desktop PC with an Intel Core i7-6700K CPU to compute
all examples. The grid sizes, parameters, and computation times
are summarized in Table 2. The computation time of our method
is almost the same as or faster than that of the source simulation.
In our method, more than 95% of the computation time was spent
smoothing patch boundaries. If the acceleration method from Ÿ6 is
not used, then patch search dominates. The rightmost column in
Table 2 shows the time needed to compute full simulations at the
same resolution as our �nal results. Running theses full-resolution
simulations takes1:5� -3:5� longer than our method (source simu-
lation + synthesis process). The video including these examples can
be found in the supplementary material.

7.1 Experiments Using 2D Flows
We investigate the behavior of our method for 2D smoke simula-
tions. The �rst experiment compares the results obtained by using
di�erent sizes for broad and narrow patches,b andB. We tested
three combinations of patch sizes:¹b;Bº = ¹3; 9º; ¹5; 17º, and¹17; 65º.
The source and the target �elds are the same as those in Fig. 5. The
results are shown in Fig. 7. This experiment indicates that small
patches are inappropriate for successfully transferring turbulent
motion (e.g., see the region indicated by the red circle in(a)). Using
patches that are too large also fails to transfer turbulent motion
as shown in the red circles in (c). Based on these experiments, we
decided to use¹b;Bº = ¹5;17º for creating the 3D examples in the
next section.

Next, we investigated the e�ects of the varying parameter
from Eq. (3), which controls the amount of incompressibility in the
synthesized �ow. We computed the average absolute divergence,
and plotted the results for = 0:1;1:0, 10:0, and100:0 in Fig. 8. As
expected, the divergence becomes smaller as grows larger.

7.2 Experiments Using 3D Flows
We applied our method to several practical 3D examples. The sizes
of the broad and narrow patches were set to173 and53 in all the
3D examples. All the images in this section were rendered by the
Mitsuba renderer [Jakob 2010]

ACM Transactions on Graphics, Vol. 37, No. 4, Article 84. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related Work
	3 Overview and Definitions
	4 Patch-based Turbulence Synthesis
	5 Smoothing Velocities between Patches
	6 Acceleration
	7 Results
	7.1 Experiments Using 2D Flows
	7.2 Experiments Using 3D Flows

	8 Discussion
	9 Conclusions
	References

