

Adaptive Refinement

Octrees

[Losasso et al. 2004]

[Shi and Yu 2004]

Graded Tetrahedra

[Klingner et al. 2006]

Dissipation Suppression

Vortex Methods

[Fedkiw et al. 2001] [Selle et al. 2005]

QUICK

[Molemaker et al. 2008]

Variational Methods

[Elcott et al. 2007] [Batty et al. 2007]

MacCormack / BFECC

[Kim et al. 2006] [Selle et al. 2008]

Energy Spectrum

Energy of one grid cell:

Total energy of grid:

$$e_{x,y} = \frac{1}{2} |v_{x,y}|^2$$

$$E = \sum_{x,y} e_{x,y}$$

Energy Spectrum

$$E_1 = \sum_{x,y} e_{x,y}$$

$$E_2 = \sum_{x,y} e_{x,y}$$

$$E_3 = \sum_{x,y} e_{x,y}$$

$$E_1 = \sum_{x,y} e_{x,y}$$
 $E_2 = \sum_{x,y} e_{x,y}$ $E_3 = \sum_{x,y} e_{x,y}$ $E_4 = \sum_{x,y} e_{x,y}$

Spectral Synthesis

• Perlin scalar turbulence:

$$turbulence(\mathbf{x}) = \sum_{k=0}^{n} noise(2^k \mathbf{x}) \cdot 2^{-k}$$

Wavelet vector turbulence:

$$y(\mathbf{x}) = \sum_{k=0}^{n} W(2^k \mathbf{x}) \cdot 2^{-\frac{5}{6}k}$$

(details in paper)

Texture Advection

- Advection of texture coord's
- Contradicting goals:
 - Either move texture with fluid
 - Or prevent distortions
- Compromise necessary...

Texture Advection

- Advection of texture coord's
- Contradicting goals:
 - Either move texture with fluid
 - Or prevent distortions
- Compromise necessary...

- Blending: smoothes out / loses detail See, e.g., [Stam 1999], [Neyret 2003]
- Here: focus on preserving frequencies

Texture Advection Advect texture coordinates on grid Measure deformations Prevent distortions Regenerate where necessary

Wavelet Turbulence - Performance

- Instead of 24+ full size float arrays:
 - 7 for MacCormack step
 - 2 for semi-Lagrange step
 - 0 for particles
- Parallel performance
 - **3.7x** speed-up (4 cores)
- Runtime high-res example
 - On average 2 minutes per frame (all steps)

Wavelet Turbulence - Conclusions

- Add physical detail as post-processing
- Preserves vortex frequencies
- Fast, efficient, low memory
- Relatively simple to implement
- Limitations
 - Cannot reproduce "correct" high-res solution
 - Obstacle interaction depends on low resolution
 - Vortex advection limited due to regeneration

