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An Eigenanalysis of Angle-Based Deformation Energies

HAOMIAO WU and THEODORE KIM, Yale University, USA

Fig. 1. Using our analysis, we simulate stiff rods and shells at large time steps. We crushed a metal shell and
a wire net at a time step of 𝑑𝑡 = 1/30 s. The bending stiffness of the shell is ` = 1𝑒6, and the Young’s modulus
of the wires is 𝐸 = 1𝑒12 Pa. Our method captures detailed buckling behaviors under large bending stiffness
while maintaining stability and efficiency.

Angle-based energies appear in numerous physics-based simulation models, including thin-shell bending and
isotropic elastic strands. We present a generic analysis of these energies that allows us to analytically filter the
negative eigenvalues of the second derivative (Hessian), which is critical for stable, implicit time integration.
While these energies are usually formulated in terms of angles and positions, we propose an abstract edge
stencil that succinctly parameterizes the edge deformation, and allows us to derive generic, closed-form
analytical expressions for the energy eigensystems. The resultant eigenvectors have straightforward geometric
interpretations. We demonstrate that our method is readily applicable to a variety of 2D and 3D angle-based
elastic energies, including both cloth and strands, and is up to 7× faster than numerical eigendecomposition.

ACM Reference Format:
Haomiao Wu and Theodore Kim. 2023. An Eigenanalysis of Angle-Based Deformation Energies. Proc. ACM
Comput. Graph. Interact. Tech. 6, 2, Article 1 (August 2023), 19 pages. https://doi.org/10.1145/3606929

1 INTRODUCTION
Many elastic energies used for deformable objects are based on angles, which often exhibit complex
nonlinear relationships to vertex positions, and incorporate geometric quantities in a reduced space.
This makes the energies difficult to analyze, and in particular it becomes unclear when the Hessians
associated with their force gradients become indefinite. This is unfortunate, because many implicit
solvers [Baraff and Witkin 1998] require the underlying system to be semi-positive definite (SPD)
in order to guarantee convergence.

Previous works have produced SPD systems by using Gauss-Newton approximation [Choi and
Ko 2002] or by explicitly filtering the Hessian at each element [Teran et al. 2005]. Recent methods
efficiently addressed this issue by constructing analytical eigendecompositions at each element.
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While this approach has been applied to hyperelastic volume [Kim et al. 2019; Smith et al. 2019]
and membrane [Kim 2020] energies, no equivalent analysis has ever been devised for angle-based
energies, in part because previous analyses rely on deformation invariants that do not generalize
to angle-based energies.
In this paper, we address this challenge by devising a new low-dimensional geometric repre-

sentation that allows us to analyze the eigensystems of this class of energies in closed form. Our
analysis applies to a variety of different energies in both 2D and 3D. We first make use of an edge
deformation matrix reminiscent of the deformation gradient for thin shells, which then allows us to
derive generic, compact expressions for the energy gradient and Hessian. From there, we transform
into a sparse, canonical coordinate system that decouples in-plane and out-of-plane movements.
Within these reduced dimensions, we are then able to derive an analytical eigendecomposition.

The analytic expressions allow us to perform an in-depth investigation of angle-based energies.
We are able to construct a geometric picture for each eigenvector, and directly examine the condi-
tions under which indefiniteness arises. Finally, we show that our derivation can be applied to a
variety of angle-based energies, including the bending energy of isotropic strands and thin shells,
and results in improved speed and robustness. To summarize our contributions:

• A generic formulation for angle-based energies based on an abstract, two-edge stencil.
• An analytical eigensystem of generalized, angle-based energies.
• An intuitive, geometric interpretation of the eigenvectors.
• An application of our analysis to strand and cloth energies.

2 RELATEDWORKS
2.1 Strand Models
Since at least the 1990s, computer graphics papers have used angle-based models for the simu-
lation of strands and hair [Anjyo et al. 1992] by employing multi-body [Hadap 2006], “angular”
[Bourguignon and Cani 2000] or “bending” formulations [Daldegan et al. 1993; Ward and Lin 2003].
Some works [Iben et al. 2013; Selle et al. 2008] have approximated these angular forces with linear
springs, but these are known to insert non-physical tangential forces that are often undesirable.
Implementing angular energies is more involved than linear springs, but by laying out generic
eigensystems here, we hope to reduce this complexity for future practitioners.
Cosserat-based strand models also use angle-based bending and twisting [Pai 2002], and have

been extended to include anisotropic cross-sections [Bergou et al. 2010]. In this paper, we focus on
isotropic cross-sections, which for the aforementioned models reduce to half-angle tangent energies
[Gingold et al. 2004]. Quadratic variants have also been useful for modelling constrained strand
assemblies [Sueda et al. 2011], which in particular includes knitted cloth [Cirio et al. 2015; Sánchez-
Banderas et al. 2020]. Angle-based strand formulations have also been applied in fabrication [Pérez
et al. 2015] and architecture [Panetta et al. 2019a]. Finally, concurrent recent work found an analytic
eigensystem for unitary bending energies in the course of formulating a new strand model [Wu
et al. 2023], but we instead analyze the fully general case here.

2.2 Shell Models
Similar to the case of strands, some works approximate angle-based bending energies with linear
springs [Bridson et al. 2002; Choi and Ko 2002; Provot et al. 1995], but these again inject tangential
forces into the simulation that introduce artificial stiffness in undesired directions.
Angle-based models have also been used for cloth and shell simulation since at least the 1990s

[Breen et al. 1994; Volino et al. 1995]. Many different formulations have been proposed, including
quadratic [Baraff and Witkin 1998; Grinspun et al. 2003], cos-based [Bridson et al. 2003], sin-based
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[Wardetzky et al. 2007], and tan-based [Gingold et al. 2004] models. Deriving the derivatives of
the bending angle, especially the Hessian required by implicit integrators, can be cumbersome, so
Tamstorf and Grinspun [2013] provide explicit expressions as well as architectural recommendations
for efficient performance. In their supplement, they provide some intuition regarding sources of
indefiniteness, and describe the rank-4 nullspace of the Hessian. Our analysis confirms their
nullspace, but goes on uncover closed-form expressions for all the non-trivial eigenpairs.

3 ANGLE-BASED EIGENANALYSIS
In the following, we will denote matrices with bold uppercase (A), vectors with bold lowercase (a),
and scalars with unbolded lowercase (𝑎). We use vec(·) to denote tensor vectorization [Golub and
Van Loan 2013], and adopt the convention that a vectorized matrix is denoted with a lowercase
version of the same symbol, e.g. vec(A) = a.

3.1 Abstract Edge Formulation
To begin, we assume that the energy is computed based on angles over some discrete object, and
that each angle is formed by two abstract edges, e0 and e1 (Fig. 2). This can correspond to two
adjacent edges in a strand, or two edges along one “flap” of a shell. Once our generic analysis is
complete, we will show how to apply our results to these specific domains in §4.

We define an angle-based elastic energy Ψ(\ ), where \ is the angle between the two edge vectors:

\ = S · acos
(

e⊤0 e1

∥e0∥∥e1∥

)
(1)

The range of \ should be [−𝜋, 𝜋] to fully describe all rotational configurations, but the range of acos
is [0, 𝜋] and the sign of \ is ambiguous. To resolve this ambiguity, domain-specific information such
as the direction of the bending edge is needed. We abstract this auxiliary geometric information
into a sign function S. Under differentiation, S becomes a constant function, aside from a point
singularity at 0 that can be addressed using a simple numerical guard. Thus, we can treat S as a
constant that does not participate in the ensuing analysis.

Without loss of generality, we define a deformation gradient for our edge stencils:

F =
[
e0
�� e1

]
. (2)

Like the deformation gradient, F fully describes the scaling and rotation of the stencil related to \ ,
but subtracts off rigid body translation modes.

Deformation gradients are usually defined as the linear map component of an affine transforma-
tion [Bonet et al. 2021], which maps the rest state to current state. For example, the deformation
gradient for membrane stretching can be computed by multiplying the current edge matrix with
the inverse of the material space coordinate matrix [Kim 2020]. In the case of a 1D edge stencil, the
material coordinates become constant scaling factors that will self-cancel in Eqn. 3, so we can omit
them here. Therefore, we can assemble the deformation gradient of our abstract stencil using only
the current state edges. We can write the derivatives of Ψ(\ ) in terms of F{

𝜕Ψ
𝜕x =

(
𝜕F
𝜕x
)
𝜕Ψ
𝜕F

𝜕2Ψ
𝜕x2 =

(
𝜕Ψ
𝜕F
)⊤ 𝜕2F

𝜕x2 +
(
𝜕F
𝜕x
)⊤ 𝜕2Ψ

𝜕F2
(
𝜕F
𝜕x
) (3)

where the Jacobian 𝜕F
𝜕x takes on different forms for strands and shells. We will later show in §4 that

𝜕2F
𝜕x2 either resolves to zero or is of low rank. Thus, analyzing the Hessian 𝜕2Ψ

𝜕F2 becomes the most
significant task.
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Fig. 2. The two-edge stencil that forms \ . The unit orthogonal vectors t0⊥ and t1⊥ together with the edges
form a local canonical coordinate system.

3.2 2D Eigenanalysis
We start with the 2D case of e0, e1 ∈ R2 and F ∈ R2. The results of this 2D analysis will then serve
as a building block for 3D. We assume the form of Ψ(\ ) can be arbitrary, so we first write the
derivatives of the intermediate variable \ .

In R2, the sign of \ can be assigned with respect to a canonical 𝑧-axis. In particular, we can define
S = sgn(𝑒00𝑒11 − 𝑒01𝑒10) where 𝑒𝑖 𝑗 is the 𝑗th component of e𝑖 . To avoid dealing with higher order
notations, we will write the analysis in terms of the vectorized deformation gradient f = vec(F).
The gradient and Hessian of \ in terms of the deformation gradient can be written as the blocks

𝜕\

𝜕e0
= S · t0⊥

∥e0∥
= g0

𝜕\

𝜕e1
= −S · t1⊥

∥e1∥
= g1 (4)

𝜕2\

𝜕e2
0
= S

C − 2t0⊥t⊤0
∥e0∥2 = D0

𝜕2\

𝜕e2
1
= S

−C + 2t1⊥t⊤1
∥e1∥2 = D1 (5)

𝜕\

𝜕f
=
[
g⊤0 g⊤1

] 𝜕2\

𝜕f2 =

[
D0 0
0 D1

]
(6)

where t𝑖 = e𝑖/∥e𝑖 ∥ is a normalized version of each edge and C =

[
0 1
−1 0

]
is a 𝜋/2 clockwise rotation

(Fig. 2). The ⊥ subscript is added to a vector whenever it is multiplied by C. e.g. Ct0 = t0⊥. The
gradient and Hessian of Ψ(\ ) can thus be written:

𝑔 =
𝜕Ψ

𝜕\
ℎ =

𝜕2Ψ

𝜕\ 2
𝜕Ψ

𝜕f
= 𝑔

[
g⊤0 g⊤1

]⊤ (7)

𝜕2Ψ

𝜕f2 = H2 = ℎ

[
g0g⊤0 g0g⊤1
g1g⊤0 g1g⊤1

]
+ 𝑔

[
D0 0
0 D1

]
(8)

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.



An Eigenanalysis of Angle-Based Deformation Energies 1:5

where the subscript on H2 indicates that it is for the 2D case. To reveal the eigenstructure of
H2 ∈ R4×4, we observe it has properties relative to the edges and their orthogonal vectors:

𝜕2Ψ

𝜕f2

[
e0
0

]
= 𝑔

(
− S
∥e0∥2

) [
e0⊥
0

]
(9)

𝜕2Ψ

𝜕f2

[
e0⊥
0

]
= ℎ

[
e0⊥
∥e0 ∥2
− e1⊥

∥e1 ∥2

]
+ 𝑔

(
− S
∥e0∥2

) [
e0
0

]
(10)

𝜕2Ψ

𝜕f2

[
0
e1

]
= 𝑔

(
S

∥e1∥2

) [
0
e1⊥

]
(11)

𝜕2Ψ

𝜕f2

[
0
e1⊥

]
= ℎ

[
− e0⊥

∥e0 ∥2e1⊥
∥e1 ∥2

]
+ 𝑔

(
S

∥e1∥2

) [
0
e1

]
. (12)

This leads us to formulate a change-of-basis based on these vectors

A2 =

[
e0 e0⊥ 0 0
0 0 e1 e1⊥

]
∈ R4×4 (13)

that then yields a sparsified version of H2

A−1
2 H2A2 =


0 𝑚0 0 0
𝑚0 𝑙0 0 −𝑙0
0 0 0 𝑚1
0 −𝑙1 𝑚1 𝑙1

 (14)

where

𝑚0 = 𝑔

(
− S
∥e0∥2

)
, 𝑚1 = 𝑔

(
S

∥e1∥2

)
, 𝑙0 =

ℎ

∥e0∥2 , 𝑙1 =
ℎ

∥e1∥2 . (15)

The eigensystem of a 4 × 4 matrix can be obtained analytically by solving for the roots of the 4th
order characteristic function. Eqn. 14 shows that H2 can be sparsified, which then yields simpler
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root expressions. The eigensystem of A−1
2 H2A2 is then given by:

u0 =


𝑤

(
(𝛾−1)2

𝛾+1 − (𝛾 + 1)𝑟 − (𝛾 − 1)𝑅−
)

−𝛾

2𝑅
2
− + 2𝑤2 + 1

2 (𝛾 − 1 − (𝛾 + 1)𝑟 ) 𝑅−
4 𝑤
𝛾+1

1 − 𝑟 − 𝑅−


(16)

u1 =


𝑤

(
(𝛾−1)2

𝛾+1 − (𝛾 + 1)𝑟 + (𝛾 − 1)𝑅−
)

−𝛾

2𝑅
2
− + 2𝑤2 − 1

2 (𝛾 − 1 − (𝛾 + 1)𝑟 ) 𝑅−
4 𝑤
𝛾+1

1 − 𝑟 + 𝑅−


(17)

u2 =


𝑤

(
(𝛾−1)2

𝛾+1 + (𝛾 + 1)𝑟 − (𝛾 − 1)𝑅+
)

−𝛾

2𝑅
2
+ + 2𝑤2 + 1

2 (𝛾 − 1 + (𝛾 + 1)𝑟 ) 𝑅+
4 𝑤
𝛾+1

1 + 𝑟 − 𝑅+


(18)

u3 =


𝑤

(
(𝛾−1)2

𝛾+1 + (𝛾 + 1)𝑟 + (𝛾 − 1)𝑅+
)

−𝛾

2𝑅
2
+ + 2𝑤2 − 1

2 (𝛾 − 1 + (𝛾 + 1)𝑟 ) 𝑅+
4 𝑤
𝛾+1

1 + 𝑟 + 𝑅+


(19)

_0 =
(𝑙0 + 𝑙1) (1 − 𝑟 − 𝑅−)

4 _1 =
(𝑙0 + 𝑙1) (1 − 𝑟 + 𝑅−)

4 (20)

_2 =
(𝑙0 + 𝑙1) (1 + 𝑟 − 𝑅+)

4 _3 =
(𝑙0 + 𝑙1) (1 + 𝑟 + 𝑅+)

4 (21)

where:

𝑤 =
S𝑔
ℎ

𝛾 =
∥e1∥2

∥e0∥2 𝑟 =

√︄
4𝑤2

(
𝛾 − 1
𝛾 + 1

)2
+ 1 (22)

𝑅− =
√︁

2 (2𝑤2 + 1 − 𝑟 ) 𝑅+ =
√︁

2 (2𝑤2 + 1 + 𝑟 ) (23)
The eigenvectors of H2 in the original coordinate system can then be retrieved by re-applying A2[

q0 q1 q2 q3
]
= A2

[
u0 u1 u2 u3

]
, (24)

where q∗ are written in unnormalized form. This particular change-of-basis does not alter the
spectrum of the eigendecomposition, so the eigenvalue expressions remain the same.
These expressions may look onerous at first, but most of the complexity comes from the edge

length scaling factor 𝛾 , and they reduce to much simpler forms when ∥e0∥ = ∥e1∥:

u0 =


−1
−1
1
−1

 u1 =


−1
1
1
1

 u2 =


1

−1+
√
𝑤2+1

𝑤

1
1−

√
𝑤2+1
𝑤


u3 =


1

−1−
√
𝑤2+1

𝑤

1
1+

√
𝑤2+1
𝑤


_0 = −ℎ𝑤/∥e0∥2 _1 = ℎ𝑤/∥e0∥2

_2 = ℎ(1 −
√
𝑤2 + 1)/∥e0∥2 _3 = ℎ(1 +

√
𝑤2 + 1)/∥e0∥2
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For simplicity, in the above expressions we assume that𝑤 > 0 and removed some scaling factors.
More importantly, we will see in §3.4 that they have clear geometric interpretations.

3.3 3D Eigenanalysis
The 3D case is similar to 2D, except that the osculating plane is not static. To track its orientation,
we define the binormal b = e0 × e1 and its normalized form t𝑏 = b/∥b∥. The in-plane orthogonal
edge vectors are thus defined as t𝑖⊥ = t𝑖 × t𝑏 for 𝑖 ∈ {0, 1}, where t𝑖 again denotes a normalized e𝑖 .
The gradient and Hessian with respect to the vectorized deformation gradient vec(F) = f ∈ R6 are:

𝜕Ψ

𝜕f
= 𝑔

[
g⊤0 g⊤1

]⊤ 𝜕2Ψ

𝜕f2 = H = ℎ

[
g0g⊤0 g0g⊤1
g1g⊤0 g1g⊤1

]
+ S𝑔

[
D00 D01
D10 D11

]
(25)

D00 =
T𝑏 − 2t0⊥t⊤0

∥e0∥2 −
T0T1 + t0⊥t⊤1⊥
∥e0∥2∥t0 × t1∥

D11 =
−T𝑏 + 2t1⊥t⊤1

∥e1∥2 −
T1T0 + t1⊥t⊤0⊥
∥e1∥2∥t0 × t1∥

(26)

D01 =
T0T0 + t0⊥t⊤0⊥
∥e0 × e1∥

D10 =
T1T1 + t1⊥t⊤1⊥
∥e0 × e1∥

(27)

where 𝑔, ℎ, g0, g1 are defined the same as Eqns. 4 and 7. T𝑖 ∈ R3×3 where 𝑖 ∈ {0, 1, 𝑏} is defined as
the Levi-Civita tensor E𝑖 𝑗𝑘 right-multiplied by the vector t𝑖 such that ∀𝑎 ∈ R3, 𝑎 × t𝑖 = T𝑖𝑎. Relative
to Eqns. 5 and 8, the 3D Hessian now includes terms that arise from differentiating b.
Similar to the 2D case, we can multiply the edges and their orthogonal vectors onto H to get

their projections onto the osculating plane. Interestingly, H displays the exact same characteristics
as H2 in Eqn. 9-12. If we denote the 3D version of A2 as A ∈ R6×4 and defined it analogously to
Eqn. 13, we obtain HA = AA⊤

2 H2A2.
This implies that H is block-diagonal in the 2D coordinate system and that the rank-4 in-plane

dynamics is linearly independent from the rank-2 out-of-plane dynamics. Thus, we can write the
first four eigenvectors of H in terms of the osculating plane[

q0 q1 q2 q3
]
= A

[
u0 u1 u2 u3

]
(28)

where q𝑖 ∈ R6.
The remaining two eigenvectors live in the complementary orthogonal space spanned by the

basis of A. If we define q =
[
𝛼t⊤

𝑏
t⊤
𝑏

]⊤, where 𝛼 is an arbitrary scalar, then q is an eigenvector of
H if and only if for some scalar _, the following holds:

Hq =
𝑔

sin\


(
𝛼 cos\
∥e0 ∥2 − 1

∥e0 ∥ ∥e1 ∥

)
t𝑏(

cos\
∥e1 ∥2 − 𝛼

∥e0 ∥ ∥e1 ∥

)
t𝑏

 = _

[
𝛼t𝑏
t𝑏

]
(29)

Solving for 𝛼 and _, we obtain the last two eigenpairs:

q4 =
1√︃

𝛼2
0 + 1

[
𝛼0t𝑏
t𝑏

]
_4 =

𝑔

sin\

(
cos\
∥e1∥2 − 𝛼

∥e0∥∥e1∥

)
(30)

q5 =
1√︃

𝛼2
0 + 1

[
t𝑏

−𝛼0t𝑏

]
_5 =

𝑔

sin\

(
cos\
∥e1∥2 + 1

𝛼 ∥e0∥∥e1∥

)
(31)

where

𝛼0 =
−𝛽 +

√︁
𝛽2 + 4

2 𝛽 =

(
∥e1∥
∥e0∥

− ∥e0∥
∥e1∥

)
cos\ (32)

Similarly, the complexity here is also dominated by the scaling.
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This concludes our eigenanalysis of Ψ(\ ) for our abstract stencil. Compared to previous position-
based formulations [Tamstorf and Grinspun 2013], our deformation gradient-based formulation and
the subsequent transformation into a canonical coordinate system reveals the analytic structure
of the Hessian. As our analysis was performed generically on \ , it can be applied to any isotropic
angle-based energy.

3.4 Eigenmode Interpretation
The Hessian can be viewed as the Jacobian H =

𝜕g
𝜕f , where g =

[
g⊤0 g⊤1

]⊤ is the vector of gradients,
and essentially maps the differential df =

[
de⊤0 de⊤1

]⊤ to dg. The eigenvectors then represents
directions along which the change in gradient aligns with the motion, i.e. dg = _df . We refer to
these motions as eigenmodes.
By examining the signs of the entries in the eigenvectors, we can view the geometry of each

eigenmodes when𝑤 > 0 in Figure 3. The top two rows illustrate the in-plane motion, where the
first row shows a rotation of the stencil (q0) and a scaling of the edge lengths (q1). The second row
shows a compression (q2) and expansion (q3) of the hinge angle. The last row shows out-of-plane
rotations about an axis in the osculating plane corresponding to q4 and q5.

q0 q1

q2 q3

q4 q5

Fig. 3. Geometry of the eigenvectors. The black vectors are current edges, light green are differentials
corresponding to the eigenvectors, and orange the edges e∗ + de∗ after deforming along the eigenmode. The
first four represents in-plane motion, and the last row describes out-of-plane rotation.
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With geometric interpretations of the eigenvectors established, we can now investigate the signs
of the eigenvalues. We first examine _0,1,2,3 from Eqns. 20 and 21 which depend on 𝑟 ∈ [0,

√
1 + 4𝑤2).

By examining the monotonicity of the eigenvalues in terms of 𝑟 , we can see that the signs of
the eigenvalues depend on the sign of ℎ. When ℎ > 0, _0 and _2 are non-positive and _1 and
_3 are non-negative. When ℎ < 0 the signs switch. Thus, H always contains at least a rank-2
negative-semi-definite subspace.
Taking the indefinite mode q2 as an example, when the stencil is compressed, there should be

increased force to resist the compression. Since the force is scaled with the reciprocal of the edge
length, and the edges are stretched, it will be attenuated due to the scaling. Thus, the change in
forces will encourage this kind of motion and make the stencil deviate further from the rest state,
causing instability.
For the out-of-plane eigenpairs, the signs of _4 and _5 are determined by 𝑔

sin\ . If
𝑔

sin\ < 0, then
_4 is negative and _5 is positive, while when 𝑔

sin\ > 0, the signs switch. This means that only one of
_4 and _5 can be negative at a time, depending on the value of \ . Thus, the out-of-plane subspace of
H always contains at least one negative eigenvalue, which corresponds to a small torque inducing
a sudden out-of-plane rotation.

Using the above analysis, we can assemble an SPD system by ignoring all negative eigenpairs and
assembling the Hessian using the outer products of the positive eigenpairs: HSPD =

∑
_𝑖>0 _𝑖q𝑖q⊤𝑖 .

4 APPLICATION TO RODS AND SHELLS
We now apply our eigenanalysis to different discrete meshes and elastic energies. Our analysis
assumes that the energy model being examined depends on an angle, which is computed with
respect to two vectors. In order to apply our analysis to a specific energy, we must define a
deformation gradient (Eqn. 2) such that an angle is computed using its columns (Eqn. 1).
More specifically, we need to assign our abstract variables e0, t1, Ψ(\ ) (including its derived

quantities 𝑔 and ℎ) and S to corresponding variables in a concrete discrete model, such that e0, e1
and \ satisfy Eqn. 1. To integrate our analysis into an actual solver, we will then need the derivatives
of the deformation gradient with respect to vertex positions.

Fig. 4. Stencils for isotropic strand bending (left) and shell bending (right).

4.1 Elastic Rod Bending Energies
The most straightforward application of our analysis is to the bending energy of elastic rods.
This energy involves a stencil with three consecutive vertices (Fig. 4, left) that already closely
corresponds to our abstract stencil. In the isotropic case of the Discrete Elastic Rods model [Bergou
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et al. 2010], the curvature-based energy can be written as an angle-based energy:

ΨDER (\ ) =
`

𝑙

(
tan \

2 − tan \𝑟

2

)2
𝑔 =

`

𝑙
·

tan
(
\
2

)
− tan

(
\𝑟
2

)
cos2

(
\
2

) ℎ =
`

𝑙
·

2 − cos\ − tan
(
\𝑟
2

)
sin\

2 cos4
(
\
2

) .

(33)

Other models are instead quadratic in the bending angle [Cirio et al. 2014],

Ψbend =
`

2 (\ − \𝑟 )2 𝑔 = ` (\ − \𝑟 ) ℎ = ` (34)

where ` denotes the stiffness and 𝑙 is the average rest edge length.
For these models, we can compute \ = S · acos

(
y⊤0 y1

∥y0 ∥ ∥y1 ∥

)
. In general, S cannot be determined

independent of the twisting, so for simplicity we set S = 1. We assign the abstract edges to
e0 = y0, e1 = y1 from Fig. 4 for this particular model, which yields the deformation gradient:

F =
[
y0
�� y1

]
. (35)

Then we have the Jacobian of the vectorized F:
𝜕f
𝜕x

=

[
−I3 I3 0
0 −I3 I3

]
∈ R6×9 (36)

where I3 is the 3 × 3 identity matrix and x =
[
x⊤0 x⊤1 x⊤2

]⊤.
In this case, it becomes clear that 𝜕2F

𝜕x2 in Eqn. 3 resolves to zero. Thus, projecting 𝜕2Ψ
𝜕F2 to be

PSD is sufficient to guarantee that 𝜕2Ψ
𝜕x2 is also PSD. With e0, e1, 𝑔, ℎ, and S all assigned, we can

directly apply the eigenanalysis from §3 to rod bending energies. Specifically, we need to assign
these values and vectors to the change-of-basis matrix from Eqn. 13, the coefficients𝑤 and 𝛾 from
Eqn. 22, and the out-of-plane rotation eigenpairs from Eqns. 30-32. After obtaining the F-based
eigensystem, plugging the Jacobian of the deformation gradient into Eqn. 3 will generate forces
and force gradients for any FEM-based solver.

4.2 Shell Bending Energies
Many shell models define their bending energy using a hinge angle, and our abstract stencil can
compactly characterize many of the different Ψcloth (\ ) proposed in previous papers. Here we list
the derivatives of some common bending energy models with respect to \ .

The quadratic Discrete Shells model [Grinspun et al. 2003] becomes:

Ψquad =
`

2 (\ − \𝑟 )2 𝑔 = ` (\ − \𝑟 ) ℎ = `. (37)

The cos-based model from [Bridson et al. 2003] resolves to:

Ψcos = `

(
cos

(
\

2

)
− 𝑏\

)
𝑔 = −`

(
1
2 sin

(
\

2

)
+ 𝑏

)
ℎ = −`

4 cos
(
\

2

)
. (38)

The sin-based energy from [Wardetzky et al. 2007] becomes:

Ψsin = `

(
sin

(
\

2

))2
𝑔 =

`

2 sin\ ℎ =
`

2 cos\ (39)

where the hinge angle \ is defined as the bending angle formed by two neighboring triangles with
a shared “hinge” edge. The right side of Fig. 4 shows a hinge stencil on a triangle mesh surface,
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where the three edges characterizing the stencil are

y𝑖 = x𝑖 − x0 t𝑖 =
y𝑖
∥y𝑖 ∥

𝑖 ∈ {1, 2, 3}. (40)

In other works, the hinge angle is computed using the normal vectors of the two triangles
(see e.g. [Tamstorf and Grinspun 2013]). However, to more closely mirror our abstract stencil, we
compute the hinge angle as \ = S

(
𝜋 − acos

(
z0 ·z1

∥z0 ∥ ∥z1 ∥

))
, where

z0 = y2 − t1t⊤1 y2 z1 = y3 − t1t⊤1 y3 (41)

are versions of y2 and y3 projected to the orthogonal plane of y1. This is equivalent to the normal-
based definition, but also captures the stencil scaling, which plays a significant role under differ-
entiation. Thus, we assign the abstract edge vectors as e0 = z0 and e1 = z1, and the deformation
gradient then becomes

F =
[
z0
�� z1

]
. (42)

The unit binormal can then be defined as t𝑏 =
z0×z1
∥z0×z1 ∥ , which is parallel to the hinge edge y1. We

can then assign S to a comparison of the binormal vector to the hinge vector: S = t𝑏 · t1.
At this point, we have already assigned e0, e1,S, 𝑔 and ℎ so that we have everything we need to

assemble the eigensystem of the Hessian. We can substitute t0 and t1 from Eqn. 4 with 𝜏0 = z0/∥z0 ∥
and 𝜏1 = z1/∥z1 ∥ to get the F-based gradient. Now we have everything we need to assemble a positive
definite F-based Hessian based on the analysis in §3. To obtain the position-based derivatives in
Eqn. 3, we will need the Jacobian of the deformation gradient:

𝜕F
𝜕x

=

[
−[2 − 𝜎 [2 𝜎 0
−[3 − 𝜎 [3 0 𝜎

]
∈ R6×12 (43)

where

𝜎 = I3 − t1t⊤1 [2 = − 1
∥y1∥

(
(t⊤1 y2)𝜎 + t1z⊤0

)
[3 = − 1

∥y1∥
(
(t⊤1 y3)𝜎 + t1z⊤1

)
. (44)

Because our novel definition of deformation gradient is based on projected vectors, we need to
be particularly careful with the chain rule in Eqn. 3. Unlike many FEM-based elastic energy models,
the first term of Eqn. 3 is nonzero. Instead, it becomes:(

𝜕Ψ

𝜕F

)⊤
𝜕2F
𝜕x2 = −𝑔S

[
𝜏⊤0
∥z0 ∥ − 𝜏⊤1

∥z1 ∥

]⊤ 𝜕2F
𝜕x2 = −𝑔SW (45)

whereW ∈ R12. To guarantee the positive-definiteness of the position-based Hessian, we need to
efficiently filter W, whose full analytic expression we give in Appendix A. Since W is a rank-4
matrix composed of outer products, its null space is easy to analyze. We can then find a basis in the
orthogonal complement of the null space that can further sparsify W

AW =
[
p0 p1 p2 p3

]
∈ R12×4 (46)

We will present the definitions of p𝑖 and show that they encode motions that complement the
6-dimensional F-based eigensystem in Appendix A. We can write W in terms of the new basis:

A−1
WWAW =


−^0 0 𝑑00 𝑑01

0 ^0 𝑑10 𝑑01
^1 0 0 0
0 ^1 0 0

 ∈ R4×4 (47)
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where

^0 = −
4𝜏⊤0 𝜏1⊥

∥y1∥2 ^1 =
2𝜏⊤0 𝜏1⊥

∥y1∥
(48)

𝑑00 =
∥p2∥2

∥p0∥2 𝑑01 =
p⊤2 p3

∥p1∥2 𝑑10 =
p⊤2 p3

∥p0∥2 𝑑01 =
∥p3∥2

∥p1∥2 (49)

Now the eigenvalues of A−1
WWAW can be computed by solving a depressed quartic equation

analytically, which has existing, mature, and efficient implementations[Khashin 2014]. For an
eigenvalue _, the corresponding unnormalized eigenvector can be computed by:

q = p0 + 𝜌p1 + ap2 + 𝜌ap3 (50)

where

a =
^1
_

𝜌 =
1

a2𝑑10
− 𝑑00
𝑑10

+ ^0
^1𝑑10a

. (51)

Our experiments have shown that two out of the four eigenvalues ofW are always non-negative.
Therefore, to perform semi-positive definite projection on W, we find the two non-negative eigen-
values and assemble their corresponding outer products.

5 DISCUSSION AND RESULTS
Our analysis is applicable to many angle-based energies and can be integrated into an FEM solver.
We have included in our supplemental materials Matlab/Octave implementations that verify the
correctness of our derivation and expressions using finite difference tests. We show a variety of
elastic rod and thin shell simulations to demonstrate the robustness of our method across different
configurations, and under large time steps.

5.1 Simulating Wire Nets
5.1.1 Implementation. To test the performance of our model on strands, we simulated a stiff net of
crossing wires, such as those used in architectural [Panetta et al. 2019b] applications. We inserted a
bending term between each pair of intersecting rod segments, resulting in six bending stencils for
each internal vertex in a checkerboard net (Fig. 5).

Fig. 5. The six bending elements at an inner vertex of a checkerboard net. Each pair of red edges denote a
bending stencil.

We applied the stretching energy from Discrete Viscous Threads (DVT) [Bergou et al. 2010],
but omitted the twisting energy because torsion is minimal in such constrained configurations.
For bending, we tried both the quadratic model from Eqn. 34 and the tangent-based model from
Eqn. 33. We use a backward Euler [Baraff and Witkin 1998] integrator with a large time step of
𝑑𝑡 = 1/30 s, and solved the global system using a Cholesky solver. We converted 𝐸 to ` using the
formula ` = 𝐸𝜋

4 𝑟 4 where 𝑟 = 0.1 cm.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 6, No. 2, Article 1. Publication date: August 2023.



An Eigenanalysis of Angle-Based Deformation Energies 1:13

(a) Quadratic Bending
𝐸 = 1𝑒11 Pa

(b) Quadratic Bending
𝐸 = 1𝑒12 Pa

(c) Tangent Bending
𝐸 = 1𝑒12 Pa

Fig. 6. A wire net with four pinned corners is simulated using different Young’s moduli. The rows are at
frames 50, 200 and 400. Our method is stable for various 𝐸 in the quadratic model (Eqn. 34), as well as the
tangent model (Eqn. 33).

(a) 𝐸 = 1𝑒10 Pa, frame 5 (b) 𝐸 = 1𝑒11 Pa, frame 12 (c) 𝐸 = 1𝑒12 Pa, frame 16

Fig. 7. Selected frames before explosion from Gauss-Newton (upper) and unfiltered (lower) simulations with
different stiffnesses.

5.1.2 Results. We test the robustness of our model under three different stiffnesses: 𝐸 = 1𝑒10 Pa,
𝐸 = 1𝑒11 Pa, and 𝐸 = 1𝑒12 Pa. We compared our filtered approach to an unfiltered method and a
Gauss-Newton approximation [Choi and Ko 2002] that only includes the leading outer product
term of the Hessian (Fig. 6).
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(a) Frame 61 (b) Frame 100 (c) Frame 300 (d) Frame 400

Fig. 8. Cloth with bending stiffnesses of ` = 1, 10, 1𝑒2, 1𝑒3, 1𝑒4 and 1𝑒5. All are simulated using a quadratic
hinge energy [Grinspun et al. 2003]. Unfiltered and Gauss-Newton approximations explode under a variety
of scenarios, which are denoted with an ×. Our filtered Hessians produce smooth results in all cases.

As can be seen in the video, at 𝐸 = 1𝑒10 Pa, the unfiltered, Gauss-Newton and filtered (ours)
approaches are all relatively stable. The Gauss-Newton approach contains some jittering at the
beginning (Fig. 7a), but stabilizes in later frames.
Under larger stiffness of 𝐸 = 1𝑒11 Pa and 𝐸 = 1𝑒12 Pa, bending forces start to dominate and

both unfiltered and Gauss-Newton explode immediately after the simulation starts. Fig. 7 shows
the frames right before explosion. For both methods, the instability emerges at the corners and
boundaries, and propagates to the whole model very quickly. We also found that Gauss-Newton
is generally less stable than the unfiltered method and explodes faster. In contrast, our method is
totally stable and settles to an equilibrium for both the quadratic and tangent-based energies. Our
method efficiently simulates stiff strand bending, even with large time steps.

5.2 Simulating Shells
5.2.1 Implementation. For shells, we constructed a row of V-shaped cloth strips with varying
stiffness, and set the rest angle of the V to 𝜋/4. One end of the cloth is attached to a wall, and
collisions with the wall are handled with Baraff-Witkin filtering [Baraff and Witkin 1998]. We
use quadratic bending (Eqn. 37), and ARAP-type membrane stretching [Kim 2020]. The scene is
simulated with backward Euler with a time step of 𝑑𝑡 = 1/30. For the linear system solver, we used
both preconditioned conjugate gradients (PCG) and Cholesky method.

5.2.2 Results. We again compare our method against unfiltered and Gauss-Newton strategies. Fig. 8
shows frames from all three methods using PCG, where a red cross appears when the simulation
exploded. In the first row of unfiltered Hessians, we see that the simulation is unstable under high
bending stiffnesses. As the strips droop under gravity, the bending energy increases, and local
instabilities quickly cause the simulation to explode.
The second row shows the results using Gauss-Newton. Unlike the unfiltered case, Gauss-

Newton is able to keep the system semi-positive definite under large stiffnesses, as can be seen
in the rightmost ` = 1𝑒5 strips. However, the middle strips show that Gauss-Newton is unstable
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(a) Frame 61 (b) Frame 100 (c) Frame 349 (d) Frame 400

Fig. 9. Comparison of the three approaches with bending stiffnesses of ` = 1, 10, 1𝑒2, 1𝑒3, 1𝑒4 and 1𝑒5 using
the same setting as Fig. 8 except that the linear system is solved using the Cholesky method.

` = 1 10 1𝑒2 1𝑒3 1𝑒4 1𝑒5 Avg.
Baseline 547 547 558 547 546 553 550
Ours 622 620 629 636 628 625 627

Numerical 3829 3849 3922 3931 4110 4112 3959
Table 1. Shell scene (Fig. 8) timings. The three methods being compared are the unfiltered baseline, our
method, and a brute-force numerical eigendecomposition. All timings are in milliseconds. The last columns
shows average timing across all stiffnesses.

under mid-range stiffnesses that undergo larger deformations. Some strips explodes when they
encounter a kinematic collision with the wall. The second strip from the right does not explode,
but drifts to one side and non-physically breaks the symmetry of the system.
Our method is shown in the last row of Fig. 8, and is consistently stabler than both unfiltered

and Gauss-Newton. Our filtered Hessian is able to fully describe the significant eigenmodes of
the system while discarding unstable modes. Fig. 9 shows the simulation results using a Cholesky
solver. Cholesky is usually more sensitive to instabilities when handling large linear systems, so
both the Gauss-Newton and unfiltered methods explode much earlier than PCG. The second row
shows that with Gauss-Newton, the rightmost strip with largest stiffness drifts to one side and hits
the wall, eventually exploding. This is because Gauss-Newton is not able to adjust to sudden local
displacements caused by kinematic collisions. The last row shows that our method also generates
asymmetric motion, which we hypothesize is due to numerical noise pushing the simulation out of
an energetic saddle point. Regardless, our method remains stable.

5.3 Crushed Cylinders
To test the robustness of our method on more complicated examples, we crushed stiff cylinders
composed of both thin shells and wire nets (Fig. 1). We attach the top and bottom of the cylinder to
two cubes that then crush the geometry. We simulated the thin shell using a bending stiffness of
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𝐸 = 1𝑒12 1𝑒11 1𝑒10 Avg.
Baseline 1764 1775 1752 1764
Ours 1898 1866 1879 1881

Numerical 12689 12920 13203 12937
Table 2. Net scene (Fig. 6) timings. All timings are in milliseconds and the Young’s moduli are in Pascals.
Methods are the same as in Table 1.

` = 1𝑒6, and the wire cylinder under the Young’s modulus of 𝐸 = 1𝑒12 Pa. Other settings are the
same as §5.1 and §5.2. Non-trivial buckling patterns form and evolve during the simulation, and
the dynamics remains stable even under sudden, large deformations. In the video, we show that
compared to our method, both unfiltered and Gauss-Newton failed to produce the wrinkles.

5.4 Timing and Efficiency
Wemeasure efficiency of ourmethod by using unfiltered Hessian construction time as a baseline, and
comparing it to our method, as well as a brute-force numerical call to SelfAdjointEigenSolver
from the Eigen library [Guennebaud et al. 2010]. In Tables 1 and 2 we list the total time spent, in
milliseconds, of computing the bending energy Hessian over 400 simulation frames. All the tests
were implemented in C++ using the Eigen library, and were run on an Apple M1 Pro chip with
10-core CPU and 32 GB memory.

Our method is 6× to 7× faster than the brute-force numerical call. Compared to the unfiltered
baseline, our method adds a negligible 14% to the shell scene and 7% to the net scene. Considering
the robustness under large time step that our method adds, this trade-off is acceptable.

6 CONCLUSIONS AND FUTUREWORK
We present the first clean eigenanalysis of angle-based deformation energies based on an abstract
stencil. Our analysis is physically interpretable and reveals the intrinsic geometric structure behind
the energy Hessian. We provide a semi-quantitative interpretation of the eigenmodes of angle-based
energies, and a fast scheme for assembling a semi-positive definite Hessian per stencil. We apply
our method to elastic rod and shell simulation and have achieved consistent improvements to
stability compared to popular existing methods, while also maintaining efficiency.

Per-element SPD projection can be suboptimal, because the finite element approximation can be
sensitive to the discretization scheme. In some extreme cases involving large velocities, fixing the
indefiniteness locally cannot prevent the instability from propagating to the global modes. Whether
there is a projection scheme that can account for global low-frequency dynamics is future work.
Even for a local per-element scenario, a fully analytical eigensystem is not guaranteed to exist for
energy types not covered in this paper, such as anisotropic rod bending.
A general eigendecomposition that is applicable to this type of angle-based energy can have

other potential applications, such as exerting controls and constraints over the simulation system in
a physically valid way. Thus, generalizing our ideas to broader applications remains future work.
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A FULL EXPRESSIONS OF THE SHELL EIGENANALYSIS
We present the full expression of the first term in Eqn. 3. This is used to derive the eigensystem of
W in §4.2. We also implemented this for experiments. First, we give the building blocks based on
the block-wise formulation in Eqn. 43:

𝜏⊤0⊥

(
𝜕[2
𝜕x

)
=

1
∥y1∥2

( [
𝜙2𝜏

⊤
0⊥ −𝜙2𝜏

⊤
0⊥ 0 0

]
− 𝜏0⊥

[
−𝜙⊤

2 − y⊤1 𝜙⊤
2 y⊤1 0

] )
∈ R3×12

𝜏⊤1⊥

(
𝜕[3
𝜕x

)
=

1
∥y1∥2

( [
𝜙3𝜏

⊤
1⊥ −𝜙3𝜏

⊤
1⊥ 0 0

]
− 𝜏1⊥

[
−𝜙⊤

3 − y⊤1 𝜙⊤
3 y⊤1 0

] )
∈ R3×12

𝜏⊤0⊥

(
𝜕𝜎

𝜕x

)
=

1
∥y1∥2

[
y1𝜏

⊤
0⊥ −y1𝜏

⊤
0⊥ 0 0

]
∈ R3×12

𝜏⊤1⊥

(
𝜕𝜎

𝜕x

)
=

1
∥y1∥2

[
y1𝜏

⊤
1⊥ −y1𝜏

⊤
1⊥ 0 0

]
∈ R3×12

where
𝜙2 = y2 − 2t1t⊤1 y2 𝜙3 = y3 − 2t1t⊤1 y3 (52)

Then the full expression of W ∈ R12×12 is:

W =



𝜏⊤0⊥
∥z0 ∥

(
− 𝜕[2

𝜕x − 𝜕𝜎
𝜕x

)
+ 𝜏⊤1⊥

∥z1 ∥

(
− 𝜕[3

𝜕x − 𝜕𝜎
𝜕x

)
𝜏⊤0⊥
∥z0 ∥

(
𝜕[2
𝜕x

)
− 𝜏⊤1⊥

∥z1 ∥

(
𝜕[3
𝜕x

)
𝜏⊤0⊥
∥z0 ∥

(
𝜕𝜎
𝜕x
)

− 𝜏⊤1⊥
∥z0 ∥

(
𝜕𝜎
𝜕x
)


(53)

We can see thatW is sparse and each block is an outer product. This property enables fast matrix
assembly, and leads us to analyze the structure of the null space and row space.
Next, by investigating the structure ofW, we found four vectors in the row space that has an

interesting property:
p⊤1 Wp0 = p⊤0 Wp1 = 0 p⊤2 Wp2 = p⊤3 Wp3 = p⊤2 Wp3 = 0 (54)

Wp0 = −^0p0 + ^1p2 Wp1 = ^0p1 + ^1p3 (55)
where p0 and p1 are defined as

p0 =


𝜏0 + 𝜏1
−𝜏0 − 𝜏1

0
0

 p1 =


𝜏0 − 𝜏1
−𝜏0 + 𝜏1

0
0

 (56)

and computing p2 and p3 using Eqn. 55 yields:

p2 =


(−𝑎1 − 𝑎0 + 𝑐1 + 𝑐0)t1

(𝑎1 + 𝑎0)t1
−𝑐0t1
−𝑐1t1

 p3 =


(−𝑎1 + 𝑎0 − 𝑐1 + 𝑐0)t1

(𝑎1 − 𝑎0)t1
𝑐0t1
−𝑐1t1


𝑎0 =

t⊤1 y2

∥y1∥∥z0∥
𝑎1 =

t⊤1 y3

∥y1∥∥z1∥
𝑐0 =

1
∥𝑧0∥

𝑐1 =
1

∥𝑧1∥
(57)

where p2 and p3 are displacements along the hinge direction t1 for each of the four vertices. The
projected edges z0 and z1 is invariant in this case and these modes p2 and p3 are not captured in
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the F-based Hessian. The p0 and p1 directions represent a rotation of the hinge edge y1, and they
are supplementary to the rotation modes of the F-based Hessian q4 and q5. After further exploiting
Eqn. 54 and Eqn. 55 using the symmetry ofW, we are able to construct the matrix in Eqn. 47 in the
chosen basis.

Because assembling the 12 by 12 filtered W directly from two outer products of 12-dimensional
vectors is relatively lightweight compared to the F-based term, the shell-based variation of our
analysis remains efficient as shown in §5.4.
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