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Figure 1: The porous, lava rock-like surface of a 546-root
approximation of the Armadillo (inset). The large numbers
of roots eventually results in exponent overflow, and termi-
nates the optimization early. The overall shape is visible, but
thin features such as the fingers, ears and toes are under-
resolved.

1. Additional Results

Two larger optimizations using more complex target shapes
were also attempted. The Armadillo (Fig. 1) and the Dragon
(Fig. 2). Both terminated early because the computation ran
out of exponent bits, but the overall shape of the target shape
is still clearly visible.

2. Marching Cubes

The performance of our Marching Cubes implementation
is shown in Table 1. The running time of the algorithm is
roughly O(nRN3), where n is the number of recursions. The
N3 dependency is visible in the 10003, 20003 and 40003 runs

Figure 2: A 708-root approximation of the Dragon (inset).
This was the most difficult optimization attempted, and ter-
minated the earliest due to exponent overflow. The broad
shape is still captured, and the hyper-complexity is partic-
ularly visible between the Dragon’s neck and body.

for the Bunny example, as each doubling increases the run-
ning time by a factor of 8. Please note that these numbers are
intended to show the scaling of the algorithm. The 294 hour,
124 million triangle, 40003 case is a stress-test, not the typi-
cal running time. All of the renderings instead use the 10003

resolution.

The R-dependency can be seen by the increase in running
times as the root complexities grow. The Armadillo example
deviates from this slightly, as its shape occupies the smallest
number of grid cells of any of the models, so more of the
exterior cells diverge to∞ after only 1 or 2 iterations.

Marching cube extensions such as dual contouring or oc-
trees could potentially improve the quality or generation
time for the meshes, but it is not clear how to apply these
methods. Octree methods require a method of determining
whether regions of space can be skipped, but there is no reli-
ably way of detecting spatial homogeneity in Julia sets. Dual
contouring methods produce higher quality meshes by lever-
aging a surface normal, but computing the analytic normal
for these Julia sets explode in complexity as the number of
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Example Running Time Grid Res. Triangles
Tooth 1:06:07 10003 5,473,218
Bunny 5:43:55 10003 7,588,775
Frog 6:20:26 10003 7,443,640
Armadillo 5:49:49 10003 9,555,448
Dragon 11:00:17 10003 25,846,616
Bunny 40:00:18 20003 30,373,962
Bunny 293:40:14 40003 124,284,594

Table 1: Running time of non-linear Marching Cubes. In all
cases, R is recursively evaluated 4 times.

iterations increase. Adapting more sophisticated Marching
Cubes extensions to that they can be leveraged for this prob-
lem remains future work.

3. Numerical Considerations

Since we are dealing with high-order rational functions con-
taining R roots, numerical issues begin to appear. More de-
tails emerge as the number of recursions n are increased, but
the degree of the rational function increases correspondingly,
effectively scaling according to O(Rn).

As a result, all of our computations had to be performed in
80-bit extended precision, the maximum precision natively
supported by Intel hardware. Many numerical applications
tend to run out of precision in the mantissa, but as we are
raising quaternions to large, arbitrary powers, we found that
our computations instead ran out of bits in the exponent.
Unfortunately, this means that hardware support for 128-bit
IEEE 754 quad-precision would not help, as it contains the
same 15 exponent bits as extended precision. Porting the al-
gorithm to GPUs also becomes non-trivial, as they currently
support a maximum of 64-bit doubles. Horner’s rule cannot
be used to stabilize factored quaternion rationals, so no as-
sistance is available in that direction either.

We ran several tests with the arbitrary-precision GNU
MPFR library to confirm that additional exponent bits would
reduce the number of NaNs that appeared under large n.
While their number reduced, even 100 exponent bits were
not sufficient to eliminate them all, even for a modest num-
ber of recursions (n = 10). MPFR already runs an order
of magnitude slower than hardware-supported precisions, so
the more practical alternative is to investigate more numer-
ically well-behaved representations such as the Lagrange
form described in the main paper.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


