
Hi everybody, I’m going to wrap up this session by diving
a little deeper into the algorithms.

This is the Lifted Curls algorithm that my students and
Professor Darke presented at the Symposium on
Computer Animation, SCA last year.

What we’re going to see is that past algorithms for
simulating the motion of hair has an assumption baked
into the math that the hair is straight, or lightly wavy.

If you make a different assumption, that the hair is very

1

Lifted Curls: A Model for Tightly
Coiled Hair Simulation

Haomiao Wu* Alvin Shi* Jarred Parr A.M. Darke Theodore Kim
Yale University University of California Yale University

* joint first authors Santa Cruz

curly, like Black hair, you can change the algorithm, and
make it both faster and more robust.

Other researchers in the community thought this was
pretty neat too. We got the Best Paper award at the
conference last year.

1

As with everything else we've seen in this course, we're
going to look at the specific case of Black hair. Not
straight hair.

2

And here’s one of our results. I’m showing this to you
first, because it’s not that common to see hair like this in
computer graphics.

3

Over the last 30 years, we’ve instead have looked almost exclusively at the simulation
of straight or wavy hair.

4

Anjyo, Usami, Kurihara, A Simple Method for Extracting the Natural Beauty of Hair, Proceedings of SIGGRAPH (1992).
Hadap and Magnenat-Thalmann, Modeling Dynamic Hair as a Continuum, Computer Graphics Forum (2001).
Chang, Jin, Yu, A Practical Model for Hair Mutual Interactions,, ACM Transactions on Graphics (2002).
Choe, Choi, Ko, Simulating Complex Hair with Robust Collision Handling, ACM Transactions on Graphics (2005).
Marschner, Jensen, Cammarano, Worley, Hanrahan, Light Scattering From Human Hair Fibers, ACM Transactions on Graphics (2003).

Wu, Yuksel, Real-time Hair Mesh Simulation, Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2016).
Chai, Zheng, Zhou, A Reduced Model for Interactive Hairs, ACM Transactions on Graphics (2014).
d’Eon, Francois, Hill, Letteri, Aubry, An Energy-Conserving Hair Reflectance Model, Computer Graphics Forum (2011).
Moon, Walter, Marschner, Efficient Multiple Scattering in Hair Using Spherical Harmonics, ACM Transactions on Graphics (2008).
Yuksel, Schaefer, Keyser, Hair Meshes, ACM Transactions on Graphics (2009).
Daviet, Simple and Scalable Frictional Contacts for Thin Nodal Objects, ACM Transactions on Graphics (2020).

Maybe you remember this curly hair paper from Pixar,
where I used to work.

This is the Taz hair system, developed for the movie
Brave. It was presented here at SCA exactly 10 years ago.

5

But put it side-by-side with our results, and it’s not the
same.

Yes, it’s curly. We’re going for curlier.

6

Other papers claim to do “curly” hair, but they seem to
mean noise layered over straight hair. That’s also not
what we’re going for.

7

[Daviet 2023][Lee et al. 2018]

There is this paper this year with similar hair, which is
great. This is position-based, whereas ours is FEM.

Some of their findings are similar to ours, where existing
rod models run into trouble with highly curved strands.

If you’re interested in this topic, you might give this one a
look too.

8

[Hsu et al. 2023]

Then there’s Discrete Elastic Rods, and its extension,
Discrete Viscous Threads. We’re talk about those later.

I’m mentioning it now just to assure you that, no, I didn’t
forget about them.

9

[Bergou et al. 2008]

[Bergou et al. 2010]

Let’s start looking at the details of our method,
particularly the elastic energy.

10

Lifted Curls: Energy Design

If you’re not familiar with elastic energy design, I did a whole course on this with
David Eberle a few years ago, where we went through things in lots of detail.

For any segment-based strand energy, you’re going to need three components.

11

First, along each line segment

12

We have a stretching term that tries to preserve the
original length, l0

13

l0

Second, between successive line segments

14

A bending energy that tries to maintain some rest angle,
theta0 between the segments.

15

𝜃0

I said three components, because these two forces are not
sufficient. Let’s attach this strand to the wall.

16

And say that all of its length and angle constraints are
satisfied.

17

𝜃0
l0

l0

You can actually rotate it

18

And still maintain have the same lengths and angle be the
same.

That might seem right for like a ball and socket joint, but
for a piece of hair? That doesn’t sound right.

If you twirl a strand of hair that’s attached to your scalp,
it should resist a little.

So, you need a third energy. A twisting or torsion energy
is needed to make this description complete.

19

l0

𝜃0
l0

Here are the three energies we need, a stretching energy, a
bending energy, and a torsion energy.

I’m going to describe each one in our model. Two will be
familiar, but the third will be different.

20

Stretching Energy Bending Energy Torsion Energy

So let’s start with the stretching energy

21

Stretching Energy

We use a quadratic length penalty

22

Stretching Energy

This is nothing special. Lots of people use this energy.

23

Stretching Energy [Choi and Ko 2002]
[Bergou et al. 2010]
[Sueda et al. 2011]

[Sanchez-Banderas et al. 2020]

Geometrically, the stretching energy only involves two
vertices, so it is intrinsically 1D. We’re dealing with a
one-dimensional quantity.

24

Stretching Energy (1D)

Next let’s look at bending.

25

Bending Energy

Again, a quadratic energy

26

Bending Energy

Again, lots of people use this.

27

Bending Energy [Sueda et al. 2011]
[Cirio et al. 2014]

[Sanchez-Banderas et al. 2020]
[Sperl et al. 2022]

Geometrically, this energy involves three vertices, so it is
intrinsically 2D. We’re essentially looking at a triangle.

28

Bending Energy (2D)

Third, the torsion energy. Here, we’re going to do
something a little bit different.

29

Torsion Energy

If we look at the stretching and bending energy, we see
that went from 1D to 2D.

But 2D isn’t sufficient, for torsion

30

Stretching Energy (1D) Bending Energy (2D)

We saw under this rotation mode.

31

Torsion Energy

That the energy stays exactly the same, so it won’t exert a
force.

You know what we can add to resolve this ambiguity?

32

Another vertex.

We’re going to define the third component of our energy
using four vertices.

33

This is then intrinsically a 3D energy. After all, if you
have four vertices, they form a tetrahedron.

34

Torsion Energy (3D)

Let’s look at the projection of the tet along the center
edge.

35

It’ll look something like this.

36

And we can measure the angle tau between these two
non-adjacent segments

37

𝜏0

We formulate a new torsion energy that is quadratic with
respect to tau.

38

𝜏0

This does remove the ambiguity.

With this fourth vertex, we have a force that will try to
maintain an angle with respect to that vertex.

39

If this red vertex rotates, its angle relative to the green
vertex will change

40

And a force will appear to rotate it back.

Exactly the behavior we wanted.

41

More formally, the other two energies only exert forces in
a fixed plane. This was not sufficient.

42

The stretching forces are constrained to the plane

43

And the bending forces can also only occur in the plane

44

It’s only by adding this out-of-plane torsion force

45

That we can get the red vertex to snap back to its original
place.

We’ve added the missing out-of-plane force.

46

So here’s the torsion energy again.

If you’re paying attention, you may have an objection to
this.

47

What if this angle tau0 is degenerate? What if tau0 is
undefined?

48

That can happen.

49

If you’re simulating straight hair. We’re not simulating

straight hair.

50

We’re simulating curly hair. The angle will always be
well- defined.

Just an aside – we did try it on straight hair, and it
actually does fine.

51

Okay, that’s the terms of our energy. All quadratic.

52

Stretching

Bending

Torsion

Again, referring back to my course notes from two years ago, if you want to push an
energy into an FEM-style solver, you need to filter its eigenvalues. Can we get
expressions for them?

53

Let’s look at the stretching energy.

This is the oldest and simplest-looking term

But numerically, it’s the most important term, because
with hair, it’s the stiffest energy of the system.

54

Stretching

Let’s start with the edge

55

Stretching

Let’s look at the direction along the edge

56

Stretching

If we normalize it according to the length of the original
edge.

57

Stretching

Then this is a 1D deformation gradient. Let’s call it d.

58

Stretching

If you then take the norm of this direction, you get a
deformation invariant

59

Stretching

Once you have an invariant, you can do a bunch of
analysis that gets you the closed-form eigensystem.

Details are in the paper. I’ll just summarize the results
here.

60

Here’s the first eigenvector.

Quite reasonably, it points along the direction of the
edge.

61

The other two eigenvectors are not unique, but span the
plane orthogonal to the edge. This also seems reasonable.
For an isotropic rod, there shouldn’t be a preferred
buckling direction.

Now the eigenvalues.

62

First, the eigenvalue along this edge? It can’t go negative.
For our quadratic energy, it’s just a constant.

63

The eigenvalues for the buckling direction look like this,
and only go negative under compression.

This is reasonable, because if you look at my student
Haomiao Wu’s paper from last year, she saw that this
corresponds to the physics of buckling.

64

Here’s something interesting. There's a very common
approximation that occurs for these kinds of simulations.

65

Gauss-Newton approximation, which amounts to
throwing this term away.

66

Gauss-Newton

For the super-specific case of stretching energies,

67

Filtering off the negative eigenvalues under compression,
exactly equals the Gauss-Newton approximation. That
strategy actually is the exact eigenvalue filter.

But, a warning: don’t use it all the time, just under
compression. We’ll see examples later.

68

That’s it for stretching

69

Stretching

Bending

Torsion

Let’s look at bending

70

Bending

For this, my student Haomiao Wu did an extremely in-
depth analysis of the phenomena in her paper last year.

71

We actually present an alternative analysis in our Lifted
Curls paper, based on the special case where the edges are
unit length.

Under this approach, you can get some extremely simple
results.

72

When I mean simple, I mean really simple.

73

Under this different coordinate system, some of the eigenvalues work out to 1 and -1.
Hard to get simpler than that.

You then have to do a little work to multiply the edge
lengths back in, but I refer you to the paper for details.

74

Okay, one energy left

75

Stretching

Bending

Torsion

Okay, one energy left

76

Torsion

Since it’s angle based, we can again apply the analysis
from Haomiao’s paper, or the alternative from our current
Lifted Curls paper.

77

Lets get to comparisons and results

78

Comparisons and Results

I promised we’d get to Discrete Viscous Threads and
elastic rods, and we’re going to look at that now.

It’s a popular model, so it’s important to compare and
contrast.

79

[Bergou et al. 2010]

For simplicity, I’ll call it DER.

80

[Bergou et al. 2010]

DER has a tangent-based bending energy, which goes to
infinity at large angles.

81

DER is a Cosserat model that has a per-edge frame.

82

Our model doesn’t have that, and the main thing we lose
is subsegment twist.

83

If the edge twists like a drill bit, our model will miss it.

This mostly happens when strands are constrained at
both ends.

But Hair is usually constrained at one end – the scalp. So,
we’re not too worried about this.

84

To summarize, Lifted Curls only uses vertex positions,

DER uses vertices and frames.

86

Lifted Curls DER

We use quadratic bending, while DER uses tangent
bending.

87

We use quadratic torsion

88

While if you dig through the math, DER’s twisting
energy is implicitly another tangent function.

Functions with higher non-linearity usually introduce
stability challenges.

89

To test things out, let’s see what happens when we
kinematically compress a coil.

90

Let’s start small and compress it by 30%. You can barely
see it.

For all these tests we wanted to see behavior under large
timesteps, so this is 1/30 of a second, using 3 Newton
iterations.

We tried a lot of different filtering strategies for DER. No
filtering, Gauss-Newton, exact filtering, and then Gauss-
Newton but with stretching filtered using our method.
Remember, most of the stiffness lives in that term
anyway.

91

A bunch of the strategies fail, and some survive. Most
importantly, ours survives.

91

If we double it to 60% compression, all the DER
strategies fail.

92

Just for fun, we compressed our by 99.999%. Still
recovered. Quadratic energies are super-robust.

To be fair, DER does recover under smaller timesteps.
But, we found you have to make it 100X to 10,000X
smaller. When you’re approaching the singularity in the
tangent function, the solver really has to tiptoe around.

93

Instead of compressing a coil, let’s jitter its vertices.

94

We jiggled each vertex by 0.5mm, and again, some
recover, and some fail.

95

Push to 2mm, everybody fails but us. Again, you need a
100X or 100,000X smaller timestep to stabilize DER.

96

Just for fun, we jiggled ours by 5mm. It recovered fine.

97

Another test. Let’s straighten a coil out entirely.

98

Again, ours bounces right back. The other ones fail.
Again, you need to dial the timestep back by 100X to
10,000X before DER stabilizes.

99

Since the formulation is entirely vertex-based, you can
throw it in with existing simulators. For example, here’s a
bunch of volumetric bunnies, and we threw some hair
ties on top of them.

100

Same shot, no bowl

101

The thing we care most about is hair. Everybody seems to
use a hairball to test their algorithms, though it’s always
been straight hair.

We’re going to use one too, but for tightly coiled hiar.

102

[Kaufman et al. 2014]
[Han et al. 2019]

[Daviet 2020] [Daviet 2023]

Here’s a hairball with 2000 wisps that we directly
simulate. Each wisp is then rendered as 100 hairs.

This is all with a really large timestep, 1/30 of a second,
and 3 Newton iterations. I’ll show you more Newton
iterations in a second.

Collisions are enabled, so clumps automatically form
between the wisps.

103

This happens in real life. Here’s the Instagram influencer
Leal Alexander, and you can see the same clumps in her
hair.

104

Leal Alexander
https://www.instagram.com/curlygallal/

Here we simulated 4K wisps, and rendered each as 50
hairs. So, same number of total hairs, but twice the
number of independent wisps.

At this level, clumps stop forming.

105

Finally, 8K wisps, rendered each with 25 hairs. A much
more “picked out” look.

106

This does match real-life. Again here is Leal Alexander
with the same hair, but she picked it out. Clumps no
longer form, and the look is fuzzier.

I just showed you 3 Newton iterations, to make the point
is that it’s stable.

107

Leal Alexander
https://www.instagram.com/curlygallal/

I just showed you 3 Newton iterations, to make the point
is that it’s stable.

If you add more iterations, you get more dynamics.
Here’s the 2K example, but with 12 Newton iterations
instead of 3

108

Here’s the 4K example again

109

And here’s the 8K example again.

110

Here’s the running times we saw.

111

The total running times are here on the right, which
might seem a little high

112

But we’re looking at lots of degrees of freedom – each
wisp has LOTS of vertices, way more than straight hair.

And, this is not some optimized GPU implementation.

You can take our energy and try to throw it onto the GPU
or come up with a position-based dynamics formulation.
Lots of opportunities there.

(next paper only has 81K DoFs)

113

This is a relatively unoptimized CPU implementation, so
you see the classic 1/3 1/3 1/3 split here between
collisions, assembly, and solve.

If you want speed, you could take our energy and try to
throw it onto the GPU or come up with a position-based
dynamics formulation. Lots of opportunities there.

114

Alright, let’s wrap it up.

115

Contributions

we’ve presented a new hyperelastic model for tightly
coiled hair

116

Contributions

•Hyperelastic model for tightly coiled hair

We’ve derived analytic eigensystems for all of its terms

117

Contributions

•Hyperelastic model for tightly coiled hair
•Analytic eigensystems for all of its terms

And the analysis is generic, and applies to lots of other energies

We even saw it stabilize DVT quite a bit.

Still lots of room for speedup and optimization.

118

Contributions

•Hyperelastic model for tightly coiled hair
•Analytic eigensystems for all of its terms
•Analysis is generic, applies to lots of energies

So -- that’s Haomiao and Alvin’s paper.

119

Lifted Curls: A Model for Tightly
Coiled Hair Simulation

Alvin Shi* Haomiao Wu* Jarred Parr A.M. Darke Theodore Kim
Yale University University of California Yale University

* joint first authors Santa Cruz

Thanks to all of our generous sponsors for funding this
work.

120

Acknowledgements

• The Bungie Foundation
• The Teng and Han Family Fund
•Adobe Research
•NSF IIS-2132280

And thank you for listening. I’d be happy to take questions now.

121

Thank You

