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A Massive Fractal in Days, Not Years
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Figure 1. Path-traced rendering of a quaternion Julia set in the shape of the Stanford Bunny
containing 10.48 billion triangles. c©Disney/Pixar

Abstract

We present a new, numerically stable algorithm that allows us to compute a previously-
infeasible, fractalized Stanford Bunny composed of 10 billion triangles. Recent work [Kim
2015] showed that it is feasible to compute quaternion Julia sets that conform to any arbitrary
shape. However, the scalability of the technique was limited because it used high-order ratio-
nals requiring 80 bits of precision. We address the sources of numerical difficulty and allow
the same computation to be performed using 64 bits. Crucially, this enables computation on
the GPU, and computing a 10 billion triangle model now takes 17 days instead of 10 years.
We show that the resulting mesh is useful a test case for a distributed renderer.
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1. Introduction

Quaternion Julia sets, 4D generalizations of Mandelbrot and Julia Sets, were first
discovered and popularized in the 1980s [Norton 1982; Hart et al. 1989]. However,
it was never clear how to introduce high-level controls that generated anything but a
limited set of taffy-like shapes, so research on the topic stalled.

Recently, Kim [2015] showed that an expressive set of high-level controls can be
introduced by using quaternion rational functions. Using these, Julia sets can conform
to any arbitrary shape while retaining their characteristic fractal appearance. Unfortu-
nately, the rational functions involve very high-degree polynomials that approach the
limits of floating point computation. Consequently, the shapes had to be computed
in 80-bit precision, which is an architecturally slow, non-optimized execution path.
This is unfortunate, because much of the appeal of fractals is that details continually
emerge at higher, more computationally-intensive resolutions.

In this work, we diagnose the numerical trouble, and show how to perform the
computations in 64-bit precision. We also obtain a negative result that suggests that
a 32-bit version is infeasible under the current formulation. Computing Fig. 1 would
previously have taken approximately 10 years on a 12-core system, but our 64-bit
algorithm allows the computations to be pushed to the GPU, and the shape was instead
computed in 17 days. The result is a triangle mesh that contains non-trivial structures
across four spatial orders of magnitude. Aside from the object’s aesthetic appeal, we
have also found it useful for testing algorithm scalability. The model does not fit into
the memory of a typical Pixar render node, so we describe how we have found it
useful as a non-trivial test for an experimental distributed renderer.

2. Julia Set Computation

The fractal being generated is a close cousin of the Mandelbrot set, a Julia set. The
algorithm is simple enough that it appears in introductory GPU texts [Sanders and
Kandrot 2010] and in the CUDA SDK. In 3D, the bottleneck is the quaternion function
evaluation that determines whether a point q lies inside the filled Julia set:

function INSIDEFILLEDJULIA(q)
while |q| ≤ maxRadius and i < maxIterations do

q = F(q)
i = i+ 1;

end while
if i == maxIterations then

return False
end if
return True

end function
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Figure 2. Detail from 10.48 billion triangle fractal Stanford Bunny. c©Disney/Pixar

Above, q denotes a quaternion, and F(q) denotes an arbitrary (and expensive) func-
tion. The classic form is the quadratic function F(q) = q2 + c, where c is some
constant. However, Kim [2015] showed that Julia sets with arbitrary shapes can be
obtained by using a power rational composed of T op and Bottom polynomials:

F(q) = T (q)
B(q)

=
(q− t1)

α1(q− t2)
α2 . . . (q− tT )

αT

(q− b1)β1(q− b2)β2 . . . (q− bB)βB
. (1)

Above, t1 . . . tT and b1 . . .bB denote quaternion-valued root locations, andα1 . . . αT
and β1 . . . βB are scalars. Values that produce a tooth, a frog, and the Stanford Bunny
were found in Kim [2015], and we re-use them here (Table 1).

Critically, F(q) had to be evaluated in 80-bit extended precision, because Infs
and NaNs otherwise appeared that polluted the final results. In order to accommodate
this slower execution path, Kim [2015] ran across multiple cores using OpenMP. A
CUDA implementation was not possible because GPUs only support up to 64 bits of
precision. Over the regular grids that we used, numerical issues consistently appeared
in a non-trivial percentage of the computations (11.3% of the cells, see Fig. 3) for the
Stanford Bunny model. While it would be possible to catch these errors by prolifically
inserting isinf and isnan checks, it was not clear what to do once an error is
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Figure 3. Left: Total Infs and NaNs produced as the grid resolution increases, using the
original, error-producing algorithm, and 64 bits. Right: Percentage of cells containing an
Inf or NaN, which remains stable across grid resolutions at approximately 11.3%.

detected. The iterate could be oscillating wildly between the super-attracting fixed
points at ‖q‖ = 0 and ‖q‖ = ∞, with T pulling it towards zero and B pulling it
towards ∞. Thus, trapping the numerical issues still leaves Julia set membership
undetermined, and so we analyze this issue further in §3.

We follow the overall approach of Kim [2015], which evaluatesF(q) over a high-
resolution regular grid, and then performs Marching Cubes to extract the final trian-
gles. Traditional Marching Cubes assumes that the level set values vary linearly be-
tween grid cells, uses linear interpolation to find the root location between cells, and
converts the root to a vertex. In our case, the values are dramatically non-linear be-
tween grid cells, so linear interpolation tends to snap vertices to cell centers or edges,
which creates an incorrect and unacceptably blocky result.

Instead, Kim [2015] uses a non-linear version of Marching Cubes, which executes
a midpoint search along each edge between cell centers, until a root is located (Fig. 4).
This search only occurs along edges that exhibit a sign flip of log (‖F(q)‖2), so a root
is guaranteed to exist along the interval. The midpoint search repeatedly evaluates
F(q), so the computation must be both fast and robust. Alternatives such as the
approach of Hart [1989] cannot be applied, because there is no known generalizations
to the quadratic “distance estimator” that is needed by that algorithm.

3. Solving the Numerical Issues

3.1. Isolating The Problem

We have found that numerical trouble occurs in F(q) when the bottom polynomial
B(q), grows quickly and exceeds the available precision. This specifically occurs
when computing B(q)−1 = B(q)∗

‖B(q)‖2 as a precursor to F(q) = T (q)
B(q) . (The ∗ denotes a

quaternion conjugate.) When ‖B(q)‖2 is computed, each component of q is squared,
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Figure 4. Marching Cubes locates roots by assuming that the function varies linearly between
cells (light green curve). If the function is highly non-linear, this assumption can produce
spurious roots near cell centers (red star). We perform a midpoint search over the actual
non-linear function (dark green curve) and accurately locate the root (blue star).

and the terms are then summed. If ‖q‖ was already very large, this computation
doubles the polynomial degree of B(q), which triggers an Inf-type overflow that
pollutes the rest of the computation.

The problem consistently appears with B(q) instead of T (q) because the algo-
rithm does not require the magnitude of T (q) to be computed. The component-
wise exponents of T (q) are not raised to an additional 2nd power, and they are never
summed into a single scalar .

3.2. The Solution

We have found that the following condition resolves the numerical issues. If ‖B(q)‖ >
10τ , then we halt computation at the moment that the iterate appears to be diverging
towards the super-attracting fixed point ‖q‖ = ∞, and conclude that this is the best
estimate of set membership that can be determined within the available precision. The
key is to define the constant:

τ = 308− 1.05

(
log10(‖B(q)‖) +

T∑
i=1

βi

)
. (2)

The τ constant estimates whether q has sufficient exponent bits remaining to sup-
port another full evaluation of F(q). First, it extracts the exponent of B(q) using
log10(‖B(q)‖). Next, it estimates how the exponent will amplify in the next iter-
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Example Total Top
Roots, T

Total Bottom
Roots, B

Sum of Top
Powers, αi

Sum of Bottom
Powers, βi

Bunny 178 153 251.998 89.3455
Frog 194 170 59.9387 33.2539
Tooth 65 43 372.339 127.73

Table 1. Polynomial degrees of the rationals used to generate several Julia sets.

ation by summing the exponents of B(q) by using
∑T

i=1 βi. The result is then sub-
tracted from 308, the maximum possible exponent of a 64-bit, IEEE 754 floating point
number. To avoid skirting too close to the limit of exponent precision, a slight conser-
vatism is introduced by scaling the sum by 1.05. More conservative scalings (e.g. 2.0)
worked equally well in our experiments, but looser scalings (e.g. 1.01) consistently
failed. The CUDA code that implements this solution is shown in Listing 1.

3.3. Validation and Discussion

We validated this formula across all available large-scale Julia set models: the Bunny,
Tooth, and Frog examples from Kim [2015]. In all cases, the Infs and NaNs were
successfully eliminated from double-precision computations, and the resulting output
was identical to the 80-bit results up to working precision.

An additional experiment was performed to validate Eqn. 2. The Tooth model
has the highest-degree bottom polynomial (Table 1). Substituting in the summed
βi from the lower-degree Bunny and Frog models re-introduced numerical issues.
Accounting for the summed βi of each model is clearly a necessary condition for
robust computation.

This overall approach misleadingly suggests that an expression for 32-bit floats
could be constructed. Following the same approach, the 308 in Eqn. 2 could be re-
placed with 38, the maximum 32-bit exponent. However, the summed polynomial
degrees of B(q) for both the Bunny and Tooth models already exceed 38, so even the
first iteration will not fit into the available precision. This explains why our previous
attempts at performing computations with 32 bits consistently failed.

4. Additional Optimizations

We attempted a variety of orthogonal micro-optimizations, but found them to be ei-
ther ineffective, or only mildly effective. When raising a quaternion to a scalar power,
using a fused sincos function resulted in an 8% speedup. Explicit loop unrolling
yielded no speedups, because the CUDA compiler already performs them automati-
cally. Demoting any portion of the computation to single precision altered the final
results unacceptably, which is consistent with our findings regarding Eqn. 2.
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__device__ inline double nonlinearValue(const double3& center)

{

double4 iterate = make_quaternion(center.x, center.y, center.z,

quaternionSlice);

double magnitude = magnitude4(iterate);

int totalIterations = 0;

double bottomPowerSum = bottomPowers[0];

for (int x = 1; x < totalBottomRoots; x++)

bottomPowerSum += bottomPowers[x];

const double4 bail = make_double4(DBL_MAX, DBL_MAX,

DBL_MAX, DBL_MAX);

bool bailed = false;

while (magnitude < escape && totalIterations < maxIterations)

{

const double4 topEval = evaluateTop(iterate);

const double4 bottomEval = evaluateBottom(iterate);

const double bottomMagnitudeSq = magnitudeSq4(bottomEval);

const double bottomMagnitude = sqrt(bottomMagnitudeSq);

// compute guard value from Eqn. 2

const double rhs = bottomPowerSum +

log(bottomMagnitude) / log(10.0);

const double topLimit = 308.0 - 1.05 * rhs;

// if the division is tiny, bail

if (bottomMagnitude < pow(10.0, topLimit))

{

const double4 bottomInv =

conjugateScaled(bottomEval, 1.0 / bottomMagnitudeSq);

multiply(topEval, bottomInv, iterate);

}

else

{

iterate = bail;

bailed = true;

}

const double scaling = (!bailed) ? expScaling : 1.0;

scale(iterate, scaling);

magnitude = (!bailed) ? magnitude4(iterate) : DBL_MAX;

totalIterations++;

}

return log(magnitude);

}

Listing 1. Iterating and evaluating Eqn. 1 in NONLINEAR SLICE CUDA.cu such that pre-
cision issues are detected and avoided.
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The code was restructured to support a streaming architecture, because one of our
basic assumptions is that the output will not fit in-core. The central Marching Cubes
algorithm was modified so that only two z-slices of the underlying regular grid were
ever held in memory simultaneously. The triangles for each slice were written to disk
immediately after each slice computation completed. Paradoxically, the successful
demotion of the algorithm to 64-bit floating point also meant that the vertex indices
had to be promoted to 64-bit ints, because the number of vertices being generated
now exceeded the addressing capacity of 32-bit ints.

5. Results and Discussion

5.1. Geometry Generation

With the described modifications in place, it became feasible to compute a fractal in
64-bit precision using CUDA on a NVIDIA Quadro M6000. The GPU yielded over
a 200× speedup, far exceeding the 10× memory CPU / GPU bandwidth differen-
tial. The algorithm is clearly compute-bound. Over 99% of the time was spent in
core arithmetic kernels such as quaternion exponentiation. We ran the algorithm on a
11, 5003 grid, which is two orders of magnitude larger than previously possible. The
final data contained 10,483,747,635 triangles, 31,451,242,905 vertices, and consumed
676 GB on disk as an uncompressed OBJ.

5.2. Rendering the Geometry

We have found that this algorithm presents an interesting case study in rendering
massive geometry. Now that we have the mesh, how do we even look at it? More
generally, we now have a method for generating an arbitrarily challenging triangle
mesh that exceeds the capacity of whatever rendering resources are available.

Such an algorithm is useful, because ever since A Bug’s Life in 1998, there is
usually at least one scene in each Pixar movie that exceeds the capacity of even the
most memory-rich node in the render farm. The scene usually appears well after R&D
has concluded, so ad hoc solutions must then be employed, e.g. manually trimming
the scene until it barely fits in-core. Scaling algorithms can be tested on static models
such as the Stanford Bunny or Michelangelo’s David, but while these were considered
large for their time, they are not challenging by modern standards. Our algorithm
allows a data set to be generated that exhibits non-trivial statistics compared to toy
examples, e.g. 10 billion random triangles or a uniformly Loop-subdivided Stanford
Bunny, but it does not require any additional modeling effort from a user.

The current 10 billion triangle fractal is already a daunting scene. We generated
images (Figs. 1 and 2) using an experimental path tracer that distributes the scene data
among several tracing servers and passes rays over a local TCP/IP network. Each
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server is responsible for all geometry within a given convex region. The regions
are non-overlapping and all occupy roughly equal amounts of storage. The servers
all have copies of an index that describes each region and the address of its owner.
Since the regions are convex and non-overlapping, a ray that enters a given region
must exit it before encountering any other region and never re-enter any region. Upon
determining that a ray does not hit any of its geometry, a server has all the information
it needs to forward the ray to the next candidate server.

Path tracing requires that we accumulate the transmittances at each ray hit along
the path. Following the Toro system [Pharr et al. 1997], we forward this accumulation
with the rays, which precludes certain non-physical effects. For example, the color
of a surface cannot change depending on the intensity of the light hitting it, since the
server that processes the hit never gets called back after the path reaches the light.
This is generally not a problem for scenes shaded using physically plausible surfaces.

Additionally, there are two servers that simulate an imaging system. One gener-
ates camera rays and forwards them to the appropriate tracing servers. The other is
responsible for accumulating the output image, and is the target to which results are
sent by rays that hit a light source or otherwise exit the scene.

We used a network of 64 tracing servers to make the image of the 10 billion
triangle bunny. The total memory occupancy among the servers was 2 TB; an average
of 31.3 GB per server. The render took roughly 36 hours to complete. The time
is almost completely determined by network latency as the servers typically ran at
about 10% to 20% CPU utilization. (We intend to speed this up by bundling rays to
reduce network overhead.) We do not view slowness as a fatal problem, because our
conventional single host renderers cannot render this image at all. They cannot fit the
geometry in main memory, and the alternative of caching geometry from secondary
storage is unrealistically expensive.

6. Conclusions and Future Work

The numerically stabilized algorithm we have presented suggests a variety of inter-
esting directions.

• Eqn. 2 suggests that in order to preserve numerical stability, Julia sets with
smaller summed polynomial degrees should be preferred. This condition could
be added to the optimization, and make it possible to discover Julia sets with a
larger number of roots, which in turn conform to more complex shapes.

• Does the fractal bunny contains infinite bunny copies? Recent results in 2D
[Lindsey and Younsi 2019] suggest that copies may exist, but exploring the
fractal has previously been too difficult for the computational reasons that we
have now resolved.
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• We computed the number of triangles generated across a range of grid resolu-
tions, and estimate the fractal dimension of the bunny to be 2.1868. Do denser,
more space-filling settings exist that provide better “bang-per-voxel”?

• Is there a different formulation under which a model of comparable quality can
be computed in a numerically stable way using 32-bit precision?

Finally, can we generate the same (or bigger) dataset in a shorter amount of time?
We have provided the CUDA source code so that others may make an attempt.
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The complete C++ and CUDA source code needed to generate Figs. 1 and 2 is provided. This
code has been successfully built and run on macOS 10.10 (Yosemite), and Red Hat Enterprise
Server 7.6 (Maipo). For comparison, the numerically unstable version from Kim [2015] is
also available online at http://www.tkim.graphics/JULIA/source.html.
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