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1 CODIMENSIONAL SPHERICAL BASIS FUNCTIONS
We now show that the polar approach from the main document
generalizes to codimensional (surface-based) flow on a sphere.

1.1 Generating Principal Spherical Functions
The spherical divergence-free condition is

∇ · s =
1

r2 sin(θ )

[
sin(θ )

∂r2sr
∂r
+ r
∂sθ sin(θ )
∂θ

+ r
∂sϕ
∂ϕ

]
. (1)

By constraining the domain to the surface of a unit sphere, this
simplifies to:

∂sθ
∂θ

sin(θ ) + sθ cos(θ ) +
∂sϕ
∂ϕ
= 0. (2)

Applying principle 2, we specify that sθ = Tθ (i1θ )Pθ (i2ϕ). Solving
for the unknown sϕ = Tϕ (θ )Pϕ (ϕ) yields:

Tϕ (θ ) = −
∂Tθ (i1θ )

∂θ
sin(θ ) −Tθ (i1θ ) cos(θ ) (3)

Pϕ (ϕ) =

∫
Pθ (i2ϕ) + L(θ ). (4)

We will next present boundary conditions for the surface of a sphere
before generating explicit expressions for the principal functions.

1.2 Codimensional Boundary Conditions
Similar to the polar case, a periodic boundary condition is needed:
Φ(θ,ϕ) = Φ(θ ,ϕ + 2π ). Unlike the polar case, we now have two sin-
gularities, one at the north (θ = 0) and another at the south (θ = π )
pole. Another consistency condition can be derived from the velocity
transformation between spherical and Cartesian coordinates:

ux
uy
uz

 =

sin(θ ) cos(ϕ) cos(θ ) cos(ϕ) − sin(ϕ)
sin(θ ) sin(ϕ) cos(θ ) sin(ϕ) cos(ϕ)

cos(θ ) − sin(θ ) 0



0
uθ
uϕ

 . (5)

By solving ∂ux
∂ϕ = 0 and ∂uy

∂ϕ = 0 at two poles, we obtain the
consistency conditions [Hill and Henderson 2016]:

∂uϕ
∂ϕ
= −uθ

∂uθ
∂ϕ
= uϕ θ = 0, (6)

∂uϕ
∂ϕ
= uθ

∂uθ
∂ϕ
= −uϕ θ = π , (7)

where u are a vector field on the surface. These boundary conditions
are similar to Eqn. 18 in the main paper, and suggest an i2 = 1
constraint in the ϕ direction for any enrichment functions. We
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will now use these boundary conditions to generate explicit basis
functions.

1.3 The Codimensional Basis Functions
Principal Basis Functions: Our first principal basis function Φ0

∗ is
obtained by applying principle 1 and setting Pθ = sin(i2ϕ):{

Φ0
θ = sin(i1θ ) cos(i2ϕ), i1 > 0, i2 > 0,

Φ0
ϕ = − 1

i2 (cos(θ ) sin(i1θ ) + i1 sin(θ ) cos(i1θ )) sin(i2ϕ).
(8)

Our second vector function Φ1
∗ is obtained using Pθ = cos(i2ϕ):{

Φ1
θ = sin(i1θ ) sin(i2ϕ), i1 > 0, i2 > 0,

Φ1
ϕ = 1

i2 (cos(θ ) sin(i1θ ) + i1 sin(θ ) cos(i1θ )) cos(i2ϕ).
(9)

The periodic boundary condition along ϕ is satisfied by setting
i2 ∈ Z+, and i1 ∈ Z+ satisfies Eqns. 6 and 7 as the functions become
zero at both poles. We next derive two enrichment basis functions
to resolve non-zero velocities at the poles.

Enrichment Basis Functions: Similar to the polar case, we obtain
two enrichment functions by setting Tθ (i1θ ) = cos(i1θ ) and i2 = 1:{

Φ2
θ = cos(i1θ ) cos(ϕ)

Φ2
ϕ = (− cos(θ ) cos(i1θ ) + i1 sin(θ ) sin(i1θ )) sin(ϕ),

(10)

{
Φ3
θ = cos(i1θ ) sin(ϕ)

Φ3
ϕ = (cos(θ ) cos(i1θ ) − i1 sin(θ ) sin(i1θ )) cos(ϕ).

(11)

Following the polar case, Φ2
∗ evaluates to Φ2

θ = cos(ϕ) and Φ2
ϕ =

− sin(ϕ) at the north pole (θ = 0), which corresponds to the x-
translation of ux = 1, uy = 0, uz = 0. Correspondingly,Φ3

∗ evaluates
to a y-translation of ux = 0, uy = 1, uz = 0. A third z-translation is
not relevant in this case, as we are capturing surface-based flow, and
the z-axis points out of the surface. Thus, Φ2

∗ and Φ3
∗ are sufficient

to represent non-zero velocities at the poles.
The last enrichment function similarly samples L(θ ) from Eqn. 4,

to represent a rigid-rotation-like circulation flow along the surface:

Φ4
θ = 0 Φ4

ϕ = sin(i1θ ). (12)

These basis functions {Φ0
∗,Φ

1
∗,Φ

2
∗,Φ

3
∗,Φ

4
∗} are now sufficient for

spiral-spectral simulations on the surface of a sphere.

2 VOLUMETRIC CYLINDRICAL BASIS
We now generalize the polar approach to a volumetric cylinder.
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2.1 Cylindrical Divergence Operator
A Cartesian point p is parameterized in cylindrical coordinates as:

px = r cos(θ ) py = r sin(θ ) pζ = bζ , (13)

where r ∈ [0, 1], θ ∈ [0, 2π ), ζ ∈ [0, 1], and b denotes height of the
cylinder. The divergence operator in cylindrical coordinates is:

∇ · s =
1
r
(r
∂sr
∂r
+ sr +

∂sθ
∂θ

) +
1
b

∂sζ
∂ζ
. (14)

2.2 Generate Cylindrical Basis Functions
Using principle 2, we assume the separate forms,

sr = Ar (r )Aθ (θ )B(ζ ) sθ = Cr (r )Cθ (θ )D(ζ ) sζ = Er (r )Eθ (θ )F (ζ ),

which yields:

b

[
Ar (r )Aθ (θ )B(ζ ) + r

∂Ar (r )

∂r
Aθ (θ )B(ζ ) +Cr (r )

∂Cθ (θ )

∂θ
D(ζ )

]
+ rErEθ

∂F (ζ )

∂ζ
= 0.

(15)

Components along ζ can be solved by setting B(ζ ) = D(ζ ) =
∂F (ζ )
∂ζ ,

which leads to:

b

(
ArAθ +

∂Cθ
∂θ

Cr

)
+ r

(
b
∂Ar
∂r

Aθ + ErEθ

)
= 0. (16)

Components along θ can be solved by setting Aθ =
∂Cθ
∂θ = Eθ ,

which simplifies the divergence-free condition to:

b (Ar +Cr ) + r

(
b
∂Ar
∂r
+ Er

)
= 0. (17)

Assuming that each addend separately sums to zero yields the terms:

Cr = −Ar Er = −b
∂Ar
∂r
, (18)

and the general solution follows:
sr = −Ar

∂Cθ
∂θ

∂F (ζ )
∂ζ

sθ = ArCθ
∂F (ζ )
∂ζ

sζ = b ∂Ar
∂r

∂Cθ
∂θ F (ζ )

. (19)

2.3 Setting Boundary Conditions
Similar to the polar case, a periodic boundary condition is needed:
Φ(θ ) = Φ(θ + 2π ). The consistency requirements can be derived by
transforming a cylindrical velocity to a Cartesian velocity:

ux
uy
uz

 =

cos(θ ) − sin(θ ) 0
sin(θ ) cos(θ ) 0
0 0 1



ur
uθ
uζ

 . (20)

At the centerline, consistency requirements can be derived by re-
quiring the Cartesian velocity ux , uy , uz be constant which respect
to θ , which results in:

∂ur
∂θ
= uθ

∂uθ
∂θ
= −ur

∂uζ
∂θ
= 0 at r = 0. (21)

2.4 Principal Basis Functions
Next, we will generate principal basis functions with Eqn. 19. The
boundary condition in Eqn. 21 can be satisfied by choosing Ar =
sin( π2 r ) sin(i1πr ). This results in two sets of principal basis func-
tions: 

Φ0
r = −i2 sin( π2 r ) sin(i1πr ) cos(i2θ )

∂F (ζ )
∂ζ

Φ0
θ = sin( π2 r ) sin(i1πr ) sin(i2θ )

∂F (ζ )
∂ζ

Φ0
ζ = i2L(r ) cos(i2θ )bF (ζ )

, (22)

where the scalar function L(r ) denotes

L(r ) =
(π
2
cos(ω) sin(i1πr ) + i1π sin(ω) cos(i1πr )

)
, (23)

and ω = πr
2 , whereas the second set is:

Φ1
r = i2 sin( π2 r ) sin(i1πr ) sin(i2θ )

∂F (ζ )
∂ζ

Φ1
θ = sin( π2 r ) sin(i1πr ) cos(i2θ )

∂F (ζ )
∂ζ

Φ1
ζ = −i2L(r ) sin(i2θ )bF (ζ )

. (24)

The function F (ζ ) is determined by the boundary condition at ζ = 0
and ζ = 1, similar to Laplacian basis functions in Cui et al. [2018].
There are four combinations:

ζ = 0 ζ = 1 F (ζ )

Dirichlet Dirichlet sin(i3πζ ), i3 ∈ Z+

Dirichlet Neumann sin(i3πζ ), i3 ∈ Z+ − 0.5
Neumann Neumann cos(i3πζ ), i3 ∈ Z+

Neumann Dirichlet cos(i3πζ ), i3 ∈ Z+ − 0.5
For the principal basis functions, the periodic boundary is satisfied
by setting i2 ∈ Z+. Dirichlet boundaries at r = 0 can be attained by
setting i1 ∈ Z+, and Neumann can be attained with i1 ∈ (Z+ − 1/2).

2.5 Enrichment Basis Functions
The first two enrichment basis functions are obtained with Ar =
cos(i1πr ), which directly extend the enrichment basis functions in
polar coordinates:

Φ2
r = cos(i1πr ) cos(θ )

∂F (ζ )
∂ζ

Φ2
θ = − cos(i1πr ) sin(θ )

∂F (ζ )
∂ζ

Φ2
ζ = i1π sin(i1πr ) cos(θ )bF (ζ )

(25)


Φ3
r = cos(i1πr ) sin(θ )

∂F (ζ )
∂ζ

Φ3
θ = cos(i1πr ) cos(θ )

∂F (ζ )
∂ζ

Φ3
ζ = i1π sin(i1πr ) sin(θ )bF (ζ )

. (26)

Checking the center for Φ2,

Φ2
∗(r = 0) =

∂F (ζ )

∂ζ

[
cos(θ ) − sin(θ ) 0

]T
, (27)

satisfies the boundary condition in 21. Checking the center again
for Φ3

∗

Φ3
∗(r = 0) =

∂F (ζ )

∂ζ

[
sin(θ ) cos(θ ) 0

]T
, (28)

also satisfies the boundary condition. Neumann boundaries at r = 0
can be attained by setting i1 ∈ Z, and Dirichlet can be attained with
i1 ∈ (Z+ − 1/2).
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Next, an extra set of enrichment basis functions is needed for z
direction. In this case, the boundary condition in Eqn. 21 along ζ
implies Eθ = 1 in Eqn. 15. The solution Cθ = θ does not satisfy
the periodic boundary condition, so for this basis function, we let
sθ = 0. This simplifies the divergence free constraint to:

Ar + r
∂Ar
∂r
+ rEr = 0. (29)

Assigning Ar = r cos(i1πr ), we obtain:
Φ4
r = r cos(i1πr )F ′(ζ )

Φ4
θ = 0

Φ4
ζ = (−2 cos(i1πr ) + i1πr sin(i1πr ))bF (ζ ),

. (30)

Checking the center for Φ4
∗:

Φ4
∗(r = 0) = −2F (ζ )

[
0 0 1

]
, (31)

satisfies the smoothness boundary condition in Eqn. 21. The Dirich-
let boundary condition at r = 1 is obtained with i1 ∈ Z+−0.5. When
Neumann boundary condition at r = 1 is desired, The r appearing in
Φ4
r prevents the velocity derivative from going to zero. To address

this issue, the following version can be used instead:
Φ4N
r = rM(r )

∂F (ζ )
∂ζ

Φ4N
θ = 0

Φ4N
ζ =

[
−2M(r ) + πr

(
i1 sin(i1πr ) + i∗1 cos(i

∗
1πr )

) ]
bF (ζ ),

where the scalar functionM(r ) denotes:

M(r ) = cos(i1πr ) − sin(i∗1πr ), (32)

and i∗1 = i1 + 1/2. By assigning i1 ∈ Z, Neumann boundary can be
attained.

Finally, to capture circular flows along the z axis, we add the last
enrichment basis: {

Φ5
r = Φ5

ζ = 0

Φ5
θ = sin(i1πr ) cos(i3πζ )

. (33)

The final volumetric cylindrical basis is the union {Φ0
∗,Φ

1
∗, . . . ,Φ

5
∗}.

3 VOLUMETRIC TOROIDAL BASIS
We now generalize to a volumetric torus.

3.1 Toroidal Divergence Operator
A Cartesian point p is parameterized in toroidal coordinates as

px = (r sin(θ ) + a) cos(ϕ) py = (r sin(θ ) + a) sin(ϕ) (34)
pz = r cos(θ ), (35)

where a > 1 denotes the major radius of the torus, and r ∈ [0, 1],
θ ∈ [0, 2π ), and ϕ ∈ [0, 2π ). This results a torus with inner radius
a − 1 and outer radius a + 1. The coordinate parameterization is
visualized in Fig. 1. The inverse of the toroidal coordinate is:

r =

√
a2 + x2 + y2 − 2a

√
x2 + y2 + z2 (36)

θ = arccos
(z
r

)
ϕ = atan2(y, x) (37)

Fig. 1. 3D toroidal coordinates.

The sign of θ is determined by its z value. If x2 + y2 ≥ a2, then
θ ∈ [0, π ]. If x2 + y2 ≤ a2, then θ ∈ [π , 2π ). The arctangent is
computed with the atan2 function in C++.

The divergence-free constraint in toroidal coordinates is:

∇ · s = (∇s + a∇p ) · s = 0 (38)

∇s · s = sin(θ )
∂

∂r
(r2sr ) + r

∂

∂θ
(sθ sin(θ )) + r

∂sϕ
∂ϕ

(39)

∇p · s =
∂

∂r
(rsr ) +

∂sθ
∂θ
. (40)

The operators ∇s , ∇p correspond to the divergence operator in
spherical and polar coordinates.

3.2 Generating Toroidal Basis Functions
The toroidal coordinate is a rotation of polar coordinates around the
z-axis. Observing this, we take basis functions in polar coordinates,
rotate them along ϕ, and make them divergence-free. For example,
we first assign sr and sθ with the first principal basis functions in
polar coordinates:

sr = i2 sin(i1πr ) cos(i2θ )
sθ = − (sin(i1πr ) + πi1r cos(i1πr )) sin(i2θ )
sϕ = 0

. (41)

We canweigh the above function alongϕ with a sine function, which
results in:

sr = i2 sin(i1πr ) cos(i2θ ) sin(i3ϕ)
sθ = − (sin(i1πr ) + πi1r cos(i1πr )) sin(i2θ ) sin(i3ϕ)
sϕ = 0

. (42)

Obviously, the basis function is divergence-free under ∇p : ∇ps = 0.
This simplifies the divergence-free constraint in Eqn. 38 into:

∇s · s = 0. (43)

In this equation, two components sr and sθ are already specified as
in Eqn. 42. The remaining component sϕ is solved by requiring the
divergence ∇s to be zero, i.e.,

∂sϕ
∂ϕ
= −

1
r
sin(θ )

∂

∂r
(r2sr ) −

∂

∂θ
(sθ sin(θ )). (44)

This will result in a set of divergence-free basis functions in toroidal
coordinates. The geometry factor a is decoupled, which leads to
basis functions that are invariant in a.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:4 • Cui, Q., Langlois, T., Sen, P., Kim, T., et al.

3.3 Setting Boundary Conditions
In toroidal coordinates, the periodic boundary condition extends
to both θ and ϕ directions: Φ(θ ) = Φ(θ + 2π ) and Φ(ϕ) = Φ(ϕ +
2π ). Similar to polar coordinates, the toroidal coordinates contain
singularities along the centerline (r = 0), where the parameter θ
maps to a single physical point. The boundary condition can be
expressed as:

∂ur
∂θ
= uθ

∂uθ
∂θ
= −ur at r = 0. (45)

The velocity transform between Cartesian and toroidal is:
ux
uy
uz

 =

sin(θ ) cos(ϕ) cos(θ ) cos(ϕ) − sin(ϕ)
sin(θ ) sin(ϕ) cos(θ ) sin(ϕ) cos(ϕ)

cos(θ ) − sin(θ ) 0



ur
uθ
uϕ

 . (46)

3.4 Principal Basis Functions
Principal basis functions can be generated by assigning sr , sθ in
Eqn. 44 with two principal basis functions from polar coordinates
and solving for sϕ . The function along ϕ can be either sin(i3ϕ) or
cos(i3ϕ). This results in four sets of principal basis functions:

Φ0
r = i2i3 sin(i1πr ) cos(i2θ ) sin(i3ϕ)

Φ0
θ = −i3L(r ) sin(i2θ ) sin(i3ϕ)

Φ0
ϕ = − (−i2 sin(i1πr ) sin(θ ) cos(i2θ )+

L(r ) cos(θ ) sin(i2θ )) cos(i3ϕ),

(47)


Φ1
r = i2i3 sin(i1πr ) cos(i2θ ) cos(i3ϕ)

Φ1
θ = −i3L(r ) sin(i2θ ) cos(i3ϕ)

Φ1
ϕ = (−i2 sin(i1πr ) sin(θ ) cos(i2θ )+

L(r ) cos(θ ) sin(i2θ )) sin(i3ϕ),

(48)


Φ2
r = i2i3 sin(i1πr ) sin(i2θ ) sin(i3ϕ)

Φ2
θ = i3L(r ) cos(i2θ ) sin(i3ϕ)

Φ2
ϕ = (i2 sin(i1πr ) sin(θ ) sin(i2θ )+

L(r ) cos(θ ) cos(i2θ )) cos(i3ϕ),

(49)


Φ3
r = i2i3 sin(i1πr ) sin(i2θ ) cos(i3ϕ)

Φ3
θ = i3L(r ) cos(i2θ ) cos(i3ϕ)

Φ3
ϕ = − (i2 sin(i1πr ) sin(θ ) sin(i2θ )+

L(r ) cos(θ ) cos(i2θ )) sin(i3ϕ).

(50)

where L(r ) denotes:

L(r ) = sin(i1πr ) + i1πr cos(i1πr ). (51)

These functions are zero at r = 0, and the boundary conditions in
Eqn. 45 are satisfied. In all the previous cases, periodic boundary
conditions along θ and ϕ are satisfied by requiring i2, i3 ∈ Z+.
Dirichlet boundary conditions at r = 1 can be attained with i1 ∈ Z+.
Neumann can be attained with i1 ∈ Z+ − 1/2.

3.5 Enrichment Basis Functions
The enrichment basis functions can be derived by assigning sr , sθ
in Eqn. 44 with two enrichment basis functions in polar coordinates.
We obtain four enrichment basis functions. The first two sets are:

Φ4
r = i3 cos(i1πr ) sin(θ ) sin(i3ϕ)

Φ4
θ = i3 (cos(i1πr ) − i1πr sin(i1πr )) cos(θ ) sin(i3ϕ)

Φ4
ϕ =

(
cos(i1πr ) − i1πr cos2(θ ) sin(i1πr )

)
cos(i3ϕ),

(52)


Φ5
r = i3 cos(i1πr ) sin(θ ) cos(i3ϕ)

Φ5
θ = i3 (cos(i1πr ) − i1πr sin(i1πr )) cos(θ ) cos(i3ϕ)

Φ5
ϕ = −

(
cos(i1πr ) − i1πr cos2(θ ) sin(i1πr )

)
sin(i3ϕ).

(53)

Checking the center to verify the consistency boundary condition,

Φ4
∗(r = 0) =


i3 sin(θ ) sin(i3ϕ)
i3 cos(θ ) sin(i3ϕ)

cos(i3ϕ)

 Φ5
∗(r = 0) =


i3 sin(θ ) cos(i3ϕ)
i3 cos(θ ) cos(i3ϕ)

− sin(i3ϕ)


(54)

both satisfy the boundary condition in Eqn. 45. At r = 0, the basis
functions Φ4

∗ align with the second row of the velocity transforma-
tion matrix in Eqn. 46 when i3 = 1, and thus represent a constant
flow along y-axis. Basis functions Φ5

∗ align with the first row, and
are able to represent a constant flow along the x-axis.

The next two sets are:
Φ6
r = i3 cos(i1πr ) cos(θ ) sin(i3ϕ)

Φ6
θ = i3 (i1πr sin(i1πr ) − cos(i1πr )) sin(θ ) sin(i3ϕ)

Φ6
ϕ = i1πr sin(i1πr ) sin(θ ) cos(θ ) cos(i3ϕ)

(55)


Φ7
r = i3 cos(i1πr ) cos(θ ) cos(i3ϕ)

Φ7
θ = i3 (i1πr sin(i1πr ) − cos(i1πr )) sin(θ ) cos(i3ϕ)

Φ7
ϕ = −i1πr sin(i1πr ) sin(θ ) cos(θ ) sin(i3ϕ)

(56)

Checking the center yields

Φ6
∗(r = 0) = sin(i3ϕ)

[
cos(θ ) − sin(θ ) 0

]T
, (57)

Φ7
∗(r = 0) = cos(i3ϕ)

[
cos(θ ) − sin(θ ) 0

]T
, (58)

where bothΦ6
∗,Φ

7
∗ align with the last column of the transform. Thus,

they are able to represent constant flow along the z-axis.
Finally, rotating the circular basis in polar coordinates is not

necessary, because Φ2
∗ with i2 = 0 already captures that mode. The

last two circular enrichment modes are:{
Φ8
r = Φ8

θ = 0
Φ8
ϕ = cos(i1πr ) sin(i2θ ),

(59)

{
Φ9
r = Φ9

θ = 0
Φ9
ϕ = cos(i1πr ) cos(i2θ ),

(60)

which represents circular motions along the z-axis. The final volu-
metric toroidal basis is the union {Φ0

∗,Φ
1
∗, . . . ,Φ

9
∗}.
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4 CODIMENSIONAL TOROIDAL BASIS
In this case, the divergence-free constraint (Eqn. 38) simplifies to:

∇ · s = a
∂sθ
∂θ
+
∂

∂θ
(sθ sin(θ )) +

∂sϕ
∂ϕ
= 0. (61)

Compared to the codimensional sphere case, the extra term is a ∂fθ
∂θ .

Therefore, we assign sθ with the θ component of the codimensional
spherical basis functions and solve for sϕ . There are no coordinate
singularities on the surface of a torus, and only periodic boundary
conditions along both θ and ϕ are needed.

4.1 Principal Basis Functions
Four sets of principal basis functions are obtained by assigning
either sine or cosine functions along θ and ϕ directions.{

Φ0
θ = i2 sin(i1θ ) cos(i2ϕ)

Φ0
ϕ = − (i1 cos(i1θ )(a + sin(θ )) + cos(θ ) sin(i1θ )) sin(i2ϕ)

(62){
Φ1
θ = i2 sin(i1θ ) sin(i2ϕ)

Φ1
ϕ = (i1 cos(i1θ )(a + sin(θ )) + cos(θ ) sin(i1θ )) cos(i2ϕ)

(63){
Φ2
θ = i2 cos(i1θ ) sin(i2ϕ)

Φ2
ϕ = (cos(θ ) cos(i1θ ) − i1(a + sin(θ )) sin(i1θ )) cos(i2ϕ)

(64){
Φ3
θ = i2 cos(i1θ ) cos(i2ϕ)

Φ3
ϕ = − (cos(θ ) cos(i1θ ) − i1(a + sin(θ )) sin(i1θ )) sin(i2ϕ)

(65)

The periodic boundary condition along ϕ is satisfied by assigning
i2 ∈ Z+. The periodic boundary condition along θ is satisfied with
i1 ∈ Z+ for Φ0

∗,Φ
1
∗ and i1 ∈ Z for Φ2

∗,Φ
3
∗.

4.2 Enrichment Basis Functions
Similar to the volumetric toroidal basis functions, two circulation
enrichment functions are added:{

Φ4
θ = 0

Φ4
ϕ = cos(i1θ )

(66){
Φ5
θ = 0

Φ5
ϕ = sin(i1θ )

. (67)

The final codimensional toroidal basis is the union {Φ0
∗,Φ

1
∗, . . . ,Φ

5
∗}.

5 VOLUMETRIC SPHEROIDAL BASIS
In this section, we extend the spherical basis functions to prolate
and oblate spheroids, where stretching and compressing the sphere
along the z-axis respectively results in the prolate and oblate cases.
Examples are shown in Fig. 2.
A point p is parameterized in prolate coordinates as:

px = br sin(θ ) cos(ϕ) py = br sin(θ ) sin(ϕ) pz = aρ cos(θ ),

where ρ =
√
1 + c2r2. Oblate coordinates are:

px = aρ sin(θ ) cos(ϕ) py = aρ sin(θ ) sin(ϕ) pz = br cos(θ ).

Similar to elliptical coordinates, we use b to denote the minor axis
of the spheroid, and which is then folded into the constants a =
√
1 − b2 and c = b/a. Both coordinate systems converge to spherical

coordinates when b → 1.
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Fig. 2. Left: Prolate spheroidal coordinates. Right: Oblate coordinates
.

5.1 Prolate Basis Functions
First, we will derive the basis functions in prolate coordinates. The
divergence operator in prolate coordinates is:

∇ · s =
1

hrhθhϕ

[
∂

∂r

(
hθhϕsr

)
+
∂

∂θ

(
hrhϕsθ

)
+
∂

∂ϕ

(
hrhθ sϕ

)]
(68)

By inserting the scale factors:

hr = ac
h

ρ
hθ = ah hϕ = acr sin(θ ) h =

√
c2r2 + sin2(θ ),

the divergence-free constraint becomes:(
sin(θ )

∂

∂r
(hrsr ) + r

∂

∂θ

(
sin(θ )ch

ρ
sθ

)
+
h2

ρ

∂sϕ
∂ϕ

)
= 0. (69)

Compare this to the spherical coordinates case:(
sin(θ )

∂

∂r

(
r2ur

)
+ r
∂

∂θ
(sin(θ )uθ ) + r

∂uϕ
∂ϕ

)
= 0. (70)

Given a divergence-free basis Φ in spherical coordinates, it can be
converted to prolate spheroidal basis functions Ψ as follows:

Ψr =
cr

h
Φr Ψθ =

ρ

h
Φθ Ψϕ =

crρ

h2
Φϕ . (71)

By inserting Ψ∗ into Eqn. 69, we reduced the divergence-free con-
straint to the spherical case (Eqn.70), which should be zero because
Φ∗ is divergence-free in spherical coordinates. Similar to the ellipti-
cal basis functions, two enrichment basis functions need attention.

The velocity transformation between Cartesian coordinates and
prolate coordinates is:

ux
uy
uz

 =
1
h


ρ sin(θ ) cos(ϕ) cr cos(θ ) cos(ϕ) −h sin(ϕ)
ρ sin(θ ) sin(ϕ) cr cos(θ ) sin(ϕ) h cos(ϕ)

cr cos(θ ) −ρ sin(θ ) 0



ur
uθ
uϕ


(72)

The factors in Eqn. 71 do not align with the first and second rows of
the transform. Therefore, the enrichment modes Ψ7

∗ and Ψ8
∗ should

be redesigned as the following:
Ψ7
r =

ρ
h cos(i1πr ) sin(θ ) sin(ϕ)

Ψ7
θ =

cr
h (−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) sin(ϕ)

Ψ7
ϕ =

1
h2

(
cos(i1πr )(1 + c2r2 − cos2(θ ))−

i1πr sin(i1πr )(c2r2 cos2(θ ) + sin2(θ ))
)
cos(ϕ)

. (73)

Checking i1 = 0, the basis function evaluates to:

Ψ7
∗ =

1
h

[
ρ sin(θ ) sin(ϕ) cr cos(θ ) sin(ϕ) h cos(ϕ)

]T
, (74)
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which aligns with the second row of Eqn. 72. Thus, it is able to
represent translation along the y-axis, similar to Φ7

∗ in spherical
coordinates. The next enrichment basis function is

Ψ8
r =

ρ
h cos(i1πr ) sin(θ ) cos(ϕ)

Ψ8
θ =

cr
h (−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) cos(ϕ)

Ψ8
ϕ =

1
h2 [− cos(i1πr )(1 + c2r2 − cos2(θ ))+

i1πr sin(i1πr )(c2r2 cos2(θ ) + sin2(θ ))] sin(ϕ)

. (75)

Checking i1 = 0, the basis function evaluates to:

Ψ8
∗ =

1
h

[
ρ sin(θ ) cos(ϕ) cr cos(θ ) cos(ϕ) −h sin(ϕ)

]T (76)

which aligns with the first row of Eqn. 72. Thus, it is able to represent
the x-translation similar to Φ8

∗ in spherical coordinates.

5.2 Oblate Basis Functions
Next, we proceed with oblate coordinates. The divergence-free con-
straint can be expressed by inserting the scale factors

hc =
√
c2r2 + cos2(θ ) hr = ac

hc
ρ

hθ = ahc hϕ = aρ sin(θ ),

into Eqn. 68:(
sin(θ )

∂

∂r

(
hc
c
ρsr

)
+
∂

∂θ
(hc sin(θ )sθ ) +

∂

∂ϕ

(
h2c
ρ
sϕ

))
= 0. (77)

The spherical basis functions Φ can be converted to oblate basis Ψ
functions as follows:

Ψr =
c2r2

hcρ
Φr Ψθ =

cr

hc
Φθ Ψϕ =

crρ

h2c
Φϕ . (78)

For oblate basis functions, three enrichment basis functions need
attention. The velocity transform between Cartesian and oblate
coordinates is:
ux
uy
uz

 =
1
hc


cr sin(θ ) cos(ϕ) ρ cos(θ ) cos(ϕ) −hc sin(ϕ)
cr sin(θ ) sin(ϕ) ρ cos(θ ) sin(ϕ) hc cos(ϕ)

ρ cos(θ ) −cr sin(θ ) 0



ur
uθ
uϕ

 .
(79)

The conversion in Eqn. 78 does not align with any rows of Eqn. 79.
We begin with Ψ6

∗:
Ψ6
r =

ρ
hc

cos(i1πr ) cos(θ )
Ψ6
θ = 1

hc
(−cr cos(i1πr ) + i1π

2c ρ2 sin(i1πr )) sin(θ )
Ψ6
ϕ = 0

. (80)

Checking i1 = 0, the basis function evaluates to

Ψ6
∗ =

1
hc

[
ρ cos(θ ) −cr sin(θ ) 0

]T
, (81)

which aligns with the last row of Eqn. 79. Thus, it represents trans-
lation along z-axis, similar to Φ6

∗ in spherical coordinates. Next, Φ7
∗

becomes
Ψ7
r =

cr
hc

cos(i1πr ) sin(θ ) sin(ϕ)
Ψ7
θ =

ρ
hc

(−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) sin(ϕ)
Ψ7
ϕ =

1
h2
c
(cos(i1πr )h2c − i1πrρ2 cos2(θ ) sin(i1πr )) cos(ϕ)

.

(82)

Checking i1 = 0, the basis function evaluates to:

Ψ7
∗ =

1
hc

[
cr sin(θ ) sin(ϕ) ρ cos(θ ) sin(ϕ) hc cos(ϕ)

]T
. (83)

This is the second row of Eqn. 79, and represents y-translation
similar to Φ7

∗ in spherical coordinates. Finally:
Ψ8
r =

cr
h cos(i1πr ) sin(θ ) cos(ϕ)

Ψ8
θ =

ρ
h (−i1πr sin(i1πr ) + cos(i1πr )) cos(θ ) cos(ϕ)

Ψ8
ϕ =

1
h2
c
(− cos(i1πr )h2c + i1πrρ2 cos2(θ ) sin(i1πr )) sin(ϕ)

.

(84)
Checking i1 = 0, the basis function evaluates to,

Ψ8
∗ =

1
hc

[
cr sin(θ ) cos(ϕ) ρ cos(θ ) cos(ϕ) −hc sin(ϕ)

]T
, (85)

which is the first row of Eqn. 79, and represents x-translation similar
to Φ8

∗ in spherical coordinates.

5.3 Computation of Dot Products and Advection Tensors
The scale factors appearing in spheroid basis functions prevent
analytical integrations along θ and r . For example, integrations of
the following functions are needed to compute both dot products
and the advection tensor:

Gss (r , θ ) = hpρqr l sin(k1πr ) sin(k2θ )
Gsc (r , θ ) = h

pρqr l sin(k1πr ) cos(k2θ )
Gcs (r , θ ) = h

pρqr l cos(k1πr ) sin(k2θ )
Gcc (r , θ ) = h

pρqr l cos(k1πr ) cos(k2θ ),

(86)

where p,q and l are integers powers, i.e., p = −2 forh−2, q = 2 for ρ2
and l = −1 for r−1. Constants k1 and k2 are integer wavenumbers.
Whenp < 0 orp is odd, the integration is no longer separable along r
and θ , and have to be integrated numerically. In our implementation,
we evaluate some combinations ofp,q, l analytically, e.g., when both
p,q > 0 are even. For other combinations, we numerically compute
a lookup table containing integer wavenumbers k1 and k2, and then
query it when computing the integrations.

6 CODIMENSIONAL SPHEROIDAL BASIS
The codimensional spherical basis can be extended to codimensional
spheroidal basis. The extension to prolate is:

Ψθ =
1
b
Φθ Ψϕ =

1
ah

Φϕ . (87)

The extension to oblate is:

Ψθ =
1
aρ

Φθ Ψϕ =
1

ahc
Φϕ . (88)

These factors are used to convert all codimensional spherical basis
functions to codimensional spheroids.

7 COMPLETENESS OF SPHERICAL SURFACE BASIS
To demonstrate the completeness of our basis functions, i.e. their
ability to represent arbitrary vector fields, we will show that we
can represent vector spherical harmonics, which is known to be
complete [Hill 1954] using our functions. We will shown that any
vector from the span of vector spherical harmonics have a non-zero
projection into our basis functions.
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7.1 Preliminaries
We will start with the scalar spherical harmonics,

Yml (θ ,ϕ) = αml Pml (cos(θ ))eimϕ , (89)

where i =
√
−1, αml =

√
(2l+1)(l−m)!
4π (l+m)! , l ∈ N, −l ≤ m ≤ l . We use

Pml to denote the associated Legendre polynomials. A closed form
formula of Pml is given in Korn and Korn [2000]:

Pml (cos(θ )) = sinm (θ )
l∑

k=m

aklm cos(θ )k−m

aklm = (−1)m2l
k!

(k −m)!

(
l

k

) ( l+1−1
2
k

)
.

(90)

The derivative of the above equation is:

Pml (cos(θ ))
∂θ

=m sinm−1(θ ) cos(θ )
l∑

k=m

aklm cos(θ )k−m−

sinm (θ )
l∑

k=m

(k −m)aklm cos(θ )k−m−1 sin(θ ).

(91)

We will also make use of the following formulas from Korn and
Korn [2000]:

sin(nθ ) =
∑

k ∈odd
(−1)

k−1
2

(
n

k

)
cosn−k (θ ) sink (θ ) (92)

cos(nθ ) =
∑

k ∈even
(−1)

k
2

(
n

k

)
cosn−k (θ ) sink (θ ). (93)

7.2 Vector Spherical Harmonics
Wewill compare our basis functions on a sphere with the divergence-
free vector spherical harmonics from Hill [1954]:

χθ =
−mYm

l√
(l (l+1)) sin(θ )

χϕ =
−i√

(l (l+1))
∂Ym

l
∂θ

(94)

These vector spherical harmonics are both complete, and eigenfunc-
tions of the Laplacian operator on the surface of a sphere [Barrera
et al. 1985]. For brevity, we ignore the −1√

(l (l+1))
constant in both

components of χ . Inserting the definition of Yml into Eqn. 94 yields
χθ =m

Pml (cos(θ ))
sin(θ ) eimϕ

χϕ = i
∂Pml (cos(θ ))

∂θ eimϕ .
(95)

We will focus on the imaginary part of the above equation,
ℑ(χθ ) =m

Pml (cos(θ ))
sin(θ ) sin(mϕ)

ℑ(χϕ ) =
∂Pml (cos(θ ))

∂θ cos(mϕ),
(96)

because the real part of χ is the same function with sine and cosine
swapped along ϕ. Once the imaginary case is established, the real
case follows. Additionally, since P−ml (x) = (−1)m (l−m)!/(l+m)!Pml (x)

[Korn and Korn 2000], it is sufficient to focus on the cases where
m ≥ 0.

To show the completeness of our basis {Φ0,Φ1,Φ2,Φ3,Φ4}, we
must prove that for any vector in the span of χ (m, l), there exists a
functionΦ, that has a non-zero projection onto that vector. This will
be shown by expanding both χ andΦ into polynomials with respect
to cos(θ ), and by showing that they span the same polynomial space
of cos(θ ). This will be proven by showing that the transformation
matrix between the span of χ and Φ is non-singular.
The proof will cover different enrichment function cases, since

each case has a slightly different polynomial form. We will begin
with the easiest case of χ (0, l), and show that its span has a non-zero
projection onto Φ4.

7.3 The χ (0, l) Case
We first examine them = 0 case, where the vector spherical har-
monics become (for readability, we have dropped the ℑ operator):

χθ (0, l) = 0 χϕ (0, l) =
∂P0l (cos(θ ))
∂θ

(97)

This corresponds to our enrichment modes Φ4 on the sphere. The
first two modes are

χθ (0, 1) = 0 χϕ (0, 1) = − sin(θ ) (98)

χθ (0, 2) = 0 χϕ (0, 2) = −
3
2
sin(2θ ), (99)

which aligns exactly with Φ4 with i1 = 1, i1 = 2. We then need to
prove that for any χ (0, l), l ∈ Z+, there exists i1 ∈ Z+, such that
Φ4 has a non-zero projection onto χ (0, l). To establish this, we first
insertm = 0 into Eqn. 91,

χθ (0, l) =
P0l (cos(θ ))
∂θ

= − sin(θ )
l∑

k=0
kakl0 cos(θ )k−1, (100)

and then expand Φ4 using Eqn. 93 to obtain:

Φ4
ϕ (i1) = sin(i1θ ) =

∑
k ∈odd

(−1)
k−1
2

(
i1
k

)
cosi1−k (θ ) sink (θ ). (101)

The χθ (0, l) term is of order l , e.g., sin(θ ) cos(θ )l−1, while the ex-
pansion of Φ4

ϕ (i1) = sin(i1θ ) is of order i1, e.g., cosi1−1(θ ) sin(θ ).
Because χ is complete, Φ4 can be expanded by χ (0, l) into the fol-
lowing form:

Φ4
ϕ (i1) = ci1 χ (0, i1) +

i1−1∑
l

cl χ (0, l). (102)

Linear combinations of the χ (0, l) terms with order less than i1
(l < i1) are not able to represent Φ4

ϕ (i1) = sin(i1θ ), which is of
order i1. Thus, for any Φ4 with wavenumber i1, there exists l = i1,
such that Φ4 has non-zero projection onto χ (0, l). This means ci1
is non-zero. Therefore, the transformation matrix between span of
Φ4, and χ (0, l) must be a lower-triangular matrix with a non-zero
diagonal 1, 1, c3, . . . , ci . Thus, the transformation matrix between
the linear spaces of χ and Φ is invertible, and the two spaces must
share the same span. In the following cases, the proof is similar, and
we will only show the diagonal entries ci1 of the transformation
matrix are non-zero.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:8 • Cui, Q., Langlois, T., Sen, P., Kim, T., et al.

7.4 The χ (1, l) Case
Next, we will prove for any χ (1, l), l ∈ Z+, there exists i1 ∈ N, such
that Φ3 have non-zero projections onto χ (1, l). We will focus on
Φ3 because whenm = 1, the imaginary part of χ corresponds to
enrichment basis functions Φ3. Two examples of χ (1, l) are given:

χθ (1, 1) = − sin(ϕ) χϕ (1, 1) = − cos(θ ) cos(ϕ) (103)
χθ (1, 2) = −3 cos(θ ) sin(ϕ) χϕ (1, 2) = −3 cos(2θ ) cos(ϕ) (104)

which exactly align with Φ3 when i1 = 0, i1 = 1. Next, χ (1, l) can
be expanded as:

χθ (1, l) =
∑l
k=1 akl1 cos(θ )

k−1 sin(ϕ)
χϕ (1, l) = (cos(θ )

∑l
k=1 akl1 cos(θ )

k−1−

sin(θ )
∑l
k=1(k − 1)akl1 cos(θ )k−2 sin(θ )) cos(ϕ)

(105)
The highest order terms are:{

χθ (1, l) = cos(θ )l−1 sin(ϕ)
χϕ (1, l) = (cos(θ ) cos(θ )l−1 − (l − 1) cos(θ )l−2 sin2(θ )) cos(ϕ)

(106)
The enrichment basis function Φ3 is:{

Φ3
θ = cos(i1θ ) sin(ϕ)

Φ3
ϕ = (cos(θ ) cos(i1θ ) − i1 sin(θ ) sin(i1θ )) cos(ϕ)

(107)

Following Eqn. 93, Φ3
θ is an order i1 polynomial along θ , and Φ3

ϕ is
an order i1 + 1 polynomial along θ . By expanding Φ3 with χ (1, l),
we have:

Φ3(i1) = ci1+1χ (1, i1 + 1) +
i1+1∑
l=1

cl χ (1, l). (108)

Thus, for any χ (1, l), l ∈ Z+, there exists i1 = l − 1 such that
Φ3 have a non-zero projection onto χ (1, l), which will resolve the
highest order terms. This means the diagonal entries ci1+1 of the
transformation matrix are non-zero, and the transformation matrix
is invertible.

7.5 The χ (m, l) Case Wherem > 1
Lastly, we will prove that for any χ (m, l) wherem > 1, there exists
Φ1 that have non-zero projection onto χ . We will focus on Φ1,
because it aligns with the imaginary component of χ . The projection
of the imaginary part of χ (m, l) onto Φ1(i1, i2) (Eqn. 9 multipled by
i2) is: 

χθ =m
Pml (cos(θ ))

sin(θ ) sin(mϕ)

χϕ =
∂Pml (cos(θ ))

∂θ cos(mϕ),
(109)

{
Φ1
θ = i2 sin(i1θ ) sin(i2ϕ)

Φ1
ϕ = (cos(θ ) sin(i1θ ) + i1 sin(θ ) cos(i1θ )) cos(i2ϕ)

(110)

⟨χ (m, l),Φ1(i1, i2)⟩ =

∫
θ
f (θ )dθ

∫ 2π

ϕ=0
sin(mϕ) sin(i2ϕ)dϕ+∫

θ
f (θ )dθ

∫ 2π

ϕ=0
cos(mϕ) cos(i2ϕ)dϕ

(111)

The dot product is non-zero if and only if i2 =m, because
∫ 2π
ϕ=0 sin(mϕ)

sin(i2ϕ)dϕ = πδi2,m , and
∫ 2π
ϕ=0 cos(mϕ) cos(i2ϕ)dϕ = πδi2,m . There-

fore for any spherical harmonics χ (m, l), only selecting i2 =m for
Φ1 could possibly results in a non-zero projection onto the spherical
harmonics.{

Φ1
θ =m sin(i1θ ) sin(mϕ)

Φ1
ϕ = (cos(θ ) sin(i1θ ) + i1 sin(θ ) cos(i1θ )) cos(mϕ)

(112)

The highest order terms appearing in χ (m, l) are
χθ (m, l) = m sinm−1(θ ) cos(θ )l−m sin(mϕ)

χϕ (m, l) = (m sinm−1(θ ) cos(θ )l−m+1−
(l −m) sinm+1(θ ) cos(θ )l−m−1) cos(mϕ),

(113)

which are respectively of order l − 1 and l . By expanding Φ1(i1,m)

with χ (m, l), we have:

Φ1(i1,m) = ci1+1χ (m, i1 + 1) +
i1+1∑
l=1

cl χ (m, l). (114)

Again Φ1
θ is an order i1 polynomial along θ , while Φ1

ϕ is an order
i1 + 1 polynomial along θ Thus, for any χ (m, l), there exists i1 =
l − 1, i2 = m, where Φ1 has a non-zero projection onto χ , which
resolves the highest order terms in Φ1. This means the diagonal
entries ci1+1 of the transformation matrix are non-zero, and the
transformation matrix is invertible.
In conclusion, we have shown the span of vector spherical har-

monics shares the same span as our basis functions. Thus, our sur-
face basis functions {Φ0,Φ1,Φ2,Φ3,Φ4} are complete.

8 THE MODIFIED CONJUGATE GRADIENT SOLVER
The equation we want to solve is:(

I −
∆t

2
C
)
wt+1 =

∆t

2
Cwt +wt + f . (115)

Applying the normal equations and CT = −C, we obtain:(
I +

∆t2

4
CTC

)
wt+1 = ∆tCwt +

∆t2

4
CCwt +wt . (116)

The following algorithm describes the modified CG solver to solve
Eqn. 116.
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